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Electromagnetic Scattering from Multiple Scale Geometries

Executive Summary

This final report describes the development, implementation, numerical validation and potential
exploitation of a highly accurate and efficient scattering solver to compute the horizontal (TE
mode) and vertical (TM mode) polarized returns from multi-scale surfaces for ocean remote
sensing applications. A large number of remote sensing applications require the
characterization by means of radar scattering measurements of the scattering surface
configuration or variations in the surface patterns for detection or environmental purposes. In
particular, for applications associated with ocean remote sensing appropriate exploitation of the
experimental measurements requires a detailed knowledge of the relation between the
characteristics of surface waves and their variation with environmental parameters, and the
properties of observables, such as polarized return power and Doppler spectrum. Relevant
ocean geometries include more than one dominant scale and recent results have shown that
the number of scales included in the problem and the accuracy of the computation can strongly
affect the prediction of modeled polarized radar backscattering returns cf. [Sei et al, 1999]. The
standard models used to predict ocean backscatter returns usually resort to simplified two-scale
model and zero or first order computations [Valenzuela, 1978]. These models are unable to
predict recent significant experimental results demonstrating that horizontally (TE mode)
polarized radar backscatter returns can intermittently exceed vertical (TM mode) polarized
returns at low grazing angles. Furthermore, the experimental measurements of the normalized
backscattered returns are generally in the —60-dB to —100-dB range [Lee et al, 1997b],
demonstrating the need for a scattering model with a relative accuracy of at least 10 digits.
These requirements, the complexity and multitude of scales present on the application of
interest as well as the absence of satisfactory scattering algorithms in the existing literature
motivated this project and an approach that emphasizes the use of high order methods to
achieve accurate and fast, versatile and user-friendly computations. The successful approach to
the solution of such a numerical challenge is based on innovative mathematical methods as well
as their very careful implementations to obtain double precision accuracy. The mathematical
methods developed for this problem are based on a combination of high order asymptotic and
perturbation methods and their implementation is based on the development of libraries for the
manipulation of Taylor-Fourier series. This final report provides a complete description of the
mathematical methods and their implementation as well as their potential exploitation for ocean
remote sensing. Technical details will often be referred to already publish work. Finally the
source code as well as a guide for its compilation and implementation is provided in the

accompanying floppy disk.




1.1 Introduction

A large number of remote sensing applications entail the characterization by means of
radar scattering measurements of the scattering surface configuration or variations in the
surface patterns for detection or environmental purposes. In particular, appropriate exploitation
of sensor measurements for ocean remote sensing applications require an in depth knowledge
of the relation between the characteristics of surface waves and their variation with
environmental parameters, and the properties of observables, such as polarized return power
and Doppler spectrum. The electromagnetic scattering from multiple scale geometries (ESMSG)
project detailed in this report focuses on the development, implementation and numerical
validation of highly accurate and efficient scattering solvers to compute the horizontal (TE
mode) and vertical (TM mode) polarization returns from multi-scale surfaces for utilization in
ocean radar remote sensing applications as well as potential extensions to terrain remote
sensing. Specific ocean radar remote sensing applications of interest include ocean spectrum
characterization for wind speed and direction prediction, ship wake detection and ocean bottom
topography and or internal current determination.

Ocean specific pattern variations can occur when internal waves created by submerged
objects or bottom topography interact with the ocean surface waves modifying the surface
roughness. In turn, the wind generates short surface waves (of the order of cm) that are
modulated by and superimposed on a continuum of longer waves ranging from 50 cm to 100’s
of meters. Depending on the wind and ocean currents, these waves can travel in various
directions creating a complex 3-dimensional surface or approach a simpler 2- dimensional-like,
but still multi-scale geometry. Although the centimeter-scale waves are mainly responsible for
backscattering microwave radar signals, recent experiments have shown that specific
characteristics of the finite amplitude long waves strongly affect the properties of the polarized
backscattering radar return; bistatic returns are expected to be affected similarly. In geheral, the
ocean surface backscattering cross sections are very low, resulting in ratios of radar return
power to radar input power of the order of —-80dB. Further, the time series measurements show
spikes in the polarization ratios TE/TM (HH/VV) that can reach values larger than 1 for small
grazing angles. Experimental analysis of the data indicates that the spikes are associated with
the presence of asymmetric, large amplitude, long waves. These results cannot be explained
with the currently used composite surface models because these models lack the accuracy
necessary for quantitative predictions and neglect multipath effects. Further, these models
strongly depend on an arbitrary separation of scales on the surface and therefore do not yield
genuine results. Other scattering models that have been used to describe the experimental

data are either not sufficiently accurate or can only model specific length scales or profiles.




In summary, the surfaces relevant to ocean surveillance applications of interest have roughness
scales of the order of the radiation wavelength with fairly large slopes. These rough surfaces
are modulated by and superimposed on variations with several length scales. These attributes
have been shown to have a significant impact on the scattering return characteristics. Polarized
ratios of the returns are particularly affected and it is necessary to model them accurately.
An appropriate model to interpret and predict radar returns for relevant ocean (as well as
terrain) remote sensing applications should be able to:
a) calculate the polarized returns from 3-dimensional, corrugated, large slope surfaces;
a) evaluate the effects of disparate scales in the return; e.g. long scale modulations of short
scale corrugations (of the order of the radiation wavelength),
b) guaranty an accuracy greater than the smallest quantity of interest (returns can be as
low as —100 dB, so the numerics must guaranty as least 10 digits)
c) be sufficiently simple and fast so that parametric investigations of correlation between

the surface characteristics and the polarized returns are easy to perform and

d) be validated.

During the three years of this project, work has been focused in obtaining and implementing
an algorithm with most of these characteristics. In particular, in order to guarantee a successful
initial algorithm, the investigations focused on the development and implementation of a fast
two-dimensional polarized scattering solver able to deal with complex muliti-scale surfaces with

10-digit accuracy and perform efficient parametric studies.

1.2 Problem

Historically, the electromagnetic scattering models used for ocean applications assumed

that the dominant return from the ocean surface was due to constructive interference from those

waves with period (4, ) resonant with the radiation wavelength (4 ,....,). Thatis, water
waves (so called Bragg waves) that satisfy the Bragg scattering condition, A, =4,/ 25108,

where 6, is the radiation incidence angle cf. [Crombie, 1955]. In that case, the rough ocean

surface was assumed to have very small slopes and the backscattered returns were computed
by low order expansions in the height of the surface (small perturbation theory) of the scattered
field. The computed vertical polarization (vertical transmit and vertical receive, VV) returns

calculated with that model are proportional to the energy density of Bragg waves and for low




grazing (high incidence) angles they are always much larger than the horizontal (horizontal
transmit and horizontal receive, HH) returns. For example, it can be shown cf. [Valenzuela,
1978] that the ratio HH/VV goes to 0 at 90 degrees incidence for a perfect conductor.

Late 70’s experimental measurements demonstrated that short surface waves (~ 30 cm)
could image long patterns (~ 1 Km) that could be associated with the ocean bottom topography.
(Cf. Figure 1B). This result was interpreted as the modulation of the resonant (Bragg) short
waves spatial distribution energy density by the long surface current gradients. Thus, in order to
understand the experimental results it was necessary to include in the model the variation in the
Bragg resonant waves due to the long wave tilt and composite models were developed to take

this effect into account. These models also predicted large vertical to horizontal return ratios

(VV/HH>>1) for small grazing angles. In addition the maximum of the Doppler spectra (power
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Figure 1: Land Sat images of the English Channel. L band: 30-cm.

A) Radar image - B) Bottom topography contours.

New experimental results obtained during the early to mid 90’s sparked a renewed interest in

appropriate scattering models to interpret polarized radar data. For example, experimental
observations with the TRW X-band radar mounted on the bow of a boat in a Loch Lihnne
experiment [Lee et al, 1995, 1996] as well as complementary laboratory experiments [Lee et al,
1997a, 1997b] showed that for low grazing angles the horizontal returns could be larger than the
vertical returns. Further, the regions where these events or spikes (HH/VV >1) occurred were of

an intermittent nature and the result of very low scattering returns, of the order of —60 to —100
dB range (See Figure 2 below). The measured Doppler spectra, also demonstrated that as the




grazing angle decreased, the maxima associated with the HH returns, moved towards faster

velocities that no longer could be associated with Bragg waves. (See Figure 2A and 2B).
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Figure 2: (A) A short sample of time-resolved, band-pass-filtered backscattered echoes at X-

Band (B) Time-integrated Doppler spectra of wind waves (see [Lee et al, 1995] for details).

The paradigm was further complicated by differences in the vertical and horizontal radar images

obtained under different weather conditions. For example, the JUSREX'92 experimental results

[Gasparovic and Etkin, 1994] indicated that internal waves are well imaged by HH and VV for a

stable boundary layer (longer wave spectrum), whereas they are not well imaged in VV for an

unstable boundary layer (short wave spectrum). The short waves mask long wave patterns in

VV but not in HH (cf. Fig. 3). These and other similar experimental results resuited in a different

understanding of the dominant scattering mechanisms from ocean surfaces:

a)

returns are associated with the modulation of short waves (of the order of 1 — 30cm) by
finite amplitude long waves (.5m — 3m) and/or the generation of large amplitude short
waves in the front faces of almost breaking long waves;

the strong horizontal polarization scattering returns are due mainly to “Non-Bragg
mechanism” that are most likely dominated by specular and multibounce or multipath
interference from incipient braking waves;

the multi-scale nature of the ocean surfaces plays a dominant role for the horizontal

returns;




d) the difference between horizontal and vertical returns yields an additional insight in the

interpretation of radar measurements.

1a)

Figure 3: Radar images taken the JUSREX'92 experiment under (a) stable and (b) unstable
boundary layer conditions (see [Churyumov and Kravtsov, 2000] for details).

Most important, the results also pointed out the need for an appropriate scattering model
that could take into account the multi-scale nature of the surface, the larger slopes and could
deal with the very low returns. Composite models using low order expansions or generally
models with low accuracy or failing to take into account the large range of contributing scales
will fail to predict the experimental results.

From a computational point of view the task of developing such a model (multi-scale, at
least 10 digit accuracy, includes both TE and TM polarizations) seems rather formidable. In the
following sections a description is given of the method employed in this project to successfully
address this computational challenge. Section 1.3 summarizes the mathematical model.
Section 1.4 discusses some of the problems encounter in its implementation and in Section 1.5
validation results are summarized. Potential exploitations of this algorithm are described in
Section 1.6. More detailed descriptions of the points discussed in those sections are given in
the Appendices as well as in the associated publications. A diskette with the algorithm and

documentation is included with this Final report.




1.3 Mathematical model

The problem of evaluating scattering returns from rough surfaces is rather challenging ---
owing to the multiple-scale nature of rough scatterers, whose spectra may span a wide range of
length-scales cf. [Valenzuela, 1978]. A number of techniques have been developed to treat
limiting cases of this problem. For example, the high frequency case, in which the wavelength A
of the incident radiation is much smaller than the characteristic surface length-scales, has been
treated by means of low order asymptotic expansions, such as the Kirchhoff approximation. On
the other hand, resonant problems where the incident radiation wavelength is of the order of the
roughness scale have been treated by perturbation methods, typically first or second order
expansions in the height h of the surface cf. [Rice, 1951; Mitzner, 1964, Shmelev, 1972;
Voronovich, 1994]. However, when a multitude of scales is present on the surface none of these
techniques is adequate, and attempts to combine them in so-called two-scale approaches have
been given cf. [Kuryanov, 1963; McDaniel and Gorman, 1983; Voronovich, 1994; Gi'man et al,
1996]. The results provided by these methods are not always satisfactory, owing to the
limitations imposed by the low orders of approximation used in both, the high frequency and the
small perturbation methods.

A new approach to multi-scale scattering, based on use of expansions of very high order
in both parameters A and h, has been proposed recently cf. [Bruno et al, 2000]. These
combined methods, which are based on complex variable theory and analytic continuation,
require nontrivial mathematical treatments; the resulting approaches, however, do expand
substantially on the range of applicability over low order methods, and can be used in some of
the most challenging cases arising in applications. Perturbation series of very high-order in h
have been introduced and used elsewhere to treat resonant problems --- in which the
wavelength of radiation is comparable to the surface length-scales cf. [Bruno and Reitich, 1993;
Sei et al, 1999].

This new method does not require separation of the surface length-scales into large and
small, but instead it is able to deal with a continuum of scales on the surface. Indeed the high
order expansions presented below have a common ““overlap" region in the (h,A) plane where
both components are highly accurate. More precisely, there is a range of surface heights and
incident wavelengths for which both methods produce results with machine accuracy. Therefore
by dividing the scales of a surface at wavelength (or scale) in the overlap region we obtain a
general method which is applicable to surfaces containing a continuum of length-scales ---

which is ideal for evaluation of scattering from surfaces with spectral distributions of oceanic

type.




We consider surfaces containing a continuum of scales but, as mentioned above, the
existence of an overlap allows us to solve the complete multiple-scale problem by expressing an
arbitrary surface

y =S(x)
as a sum
y = So(x) + F(x)

where Sg(x) contains wavenumbers less than Ns, and F(x) contains the complementary set of
wavenumbers greater then N. Thus, our method uses a dichotomy in wave numbers but it does
not assume a separation of scales. This feature is essential in the study of oceanic waves since
many studies show that the wave spectrum spans a large range of wavenumbers (see for
instance [Pierson and Moskowitz, 1964]).

The discussion here is restricted to the particular case of an HH configuration in two
dimensions since the VV case can be treated similarly. The modifications necessary to treat the
VV case will be pointed out as needed. The scattered field created by an incident H polarized
plane wave impinging on the rough surface solves the Helmholtz equation with a Dirichlet
boundary condition. Our approach to the solution of the general problem with rough surface y=

S(x) proceeds as follows:

e We consider the surface S(x,0) = Sp (x) + OF(x), which will be used as a basis for a
perturbative method in the parameter 8.

e The solution u = u(x,8) associated with the surface S(x,0) is obtained by perturbation
theory around 6 = 0.

¢ The solution for the surface S(x) is then recovered by setting 6=1. (This evaluation

usually leads to divergent series whose re-summation requires appropriate analytic

continuation.)

In detail, writing:

+ oo 5m
u(x,z,0)= Y u_(x,z)—
m m!
) m=0
u, (x,2)= 351;: (x,z,0 =0)

10




The fact that, for every value of 8 the field u(x,z,0) solves the Helmholtz equation
Au(x,z;0) + k*u(x,z;6)=0

(2)
u(x,8(x,6);0)=-u"(x,5(x,96))

implies that, for index m we have
Au, (x,z)+k’u,(x,z) =0

(3)
u, (x,8,(x)) =G[F,uqy,u,,.., u, J(x,S5,(x))

The interest in this equation arises from the fact that, although the right hand side in the
boundary condition for ur, is highly oscillatory, the surface Sy itself is not. We therefore have
reduced a problem on a highly oscillatory surface to a sequence of problems on a non-

oscillatory surface. For example the zeroth, first and second order Taylor coefficients uo, us and

uz in the expansion of u(x,z,d) solve the following scattering problems:

Au (x,z)+k’u,(x,z) =0
du, ou™

2z oz

(5)

<ul(x,So(JC)) = —F(X)( )(x,So(x))

N

(Au,(x,z)+ kuy(x,z) =0
(4) \

(4o (x,80(x)) = —u"™ (x,8,(x))

-

Au,(x,z)+ k*u,(x,z)=0

aZ a2 inc
(6) LUy (x,5,(x)) = -Fz(x)( azuz(’ + azz

- 2F(x) %yj(x, So(x))

)(X,SO(X))

The general boundary condition for unin equation (3) (denoted by G[F, ug, us, ...,Un.
11(x,So(x))) can be computed by differentiation of order m with respect to 8 of the exact

boundary condition of equation (2). Note the boundary term for un, involve all the previous Taylor
coefficients u; j=0...m-1. This is already obvious on equation (5) and (6).

11




From equation (4), (5) and (B), it is clear that the computation of each Taylor coefficients
um involves solving a high frequency problem on a smooth surface. Typically u™ is a plane
wave with wave number k=2nt/A and Sg is a surface with characteristic length d much greater
than A. The characteristic length in our approach is the period of the surface as we have chosen
a Fourier description of the surface. We are then faced with solving very accurately a high-

frequency scattering problem.

Also equations (4), (5) and (6) show that the computation of the boundary condition
involves z-derivatives of high-order of the previous Taylor coefficients. The simplest example is
the boundary condition for u, involves the z-derivative of u,. Since we know up on the surface
(from equation (4)) knowing the z-derivative is equivalent to knowing the normal derivative on
the surface. This involves therefore the computation of the Dirichlet to Neumann map. So the

two main components of the algorithm are

¢ A High-frequency solver

e A Dirichlet to Neumann Map code

We give below an overview of each component. A detailed description of the high-frequency

solver can be found in [Bruno et al., 2002].

1.3.1 High-Frequency Solver

1.3.1.1 Background

Our approach to the high-frequency problem uses an integral equation formulation,

whose solution v(x) is sought and obtained in the form of an asymptotic expansion

n=p

with p=-1 for TM polarization and p=0 for TE polarization. This expansion is similar in form to

the geometrical optics

t)) u(x,z,k)= i Z)Z
n=0

u (x z)

where S=S(x,z) is the unknown phase of the scattered field. Note that the phase of the density
v(x) of (7) is determined directly from the geometry and the incident field and, unlike that in the

geometrical optics field, it is not an unknown of the problem. In particular, the present approach

12




does not require solution of an eikonal equation (cf. [Vidale, 1988; VanTrier and Symes, 1991,
Fatemi et al, 1995: Benamou, 1999], and it bypasses the complex nature of the field of rays,
caustics, etc.

The validity of the expansion (8) has been extensively studied [Friediander, 1946;
Luneburg, 1949a; Luneburg, 1949b; Van Kampen, 1949; Luneburg, 1964]; in particular, itis
known that equation (8) needs to be modified in the presence of singularities of the scattering
surface. To treat edges and wedges, for example, an expansion containing powers of k"2
[Luneburg, 1949b; Van Kampen, 1949; Keller, 1958; Lewis and Boersma, 1969; Lewis and
Keller, 1964] must be used; caustics and creeping waves also lead to similar modified
expansions [Kravtsov, 1964; Brown, 1966; Ludwig, 1966; Lewis et al, 1967; Ahluwalia et al,
1968]. Proofs of the asymptotic nature of expansion (8) were given in cases where no such
singularities occur [Miranker, 1957; Bloom and Kazarinoff, 1976]. In practice only expansions (8)
of very low orders (one, or, at most two) have been used, owing in part to the substantial
algebraic complexity required by high order expansions [Bouche et al, 1997]. First order
versions of the expansion (7), on the other hand were treated in [Lee, 1975; Chaloupka and
Meckelburg, 1985; Ansorge 1986,1987].

The region of validity of our expansion (7) the other hand corresponds to configurations where
no shadowing occurs. At shadowing the wave vector of the incident plane wave is tangent to the
surface at some point, which causes certain integrals to diverge; see [Bruno et al, 2002] for
details. Thus, a different kind of expansion, in fractional powers of 1/k, should be used to treat
shadowing configurations: a first order version of such an expansion was discussed in [Hong,
1967]; see [Friedlander and Keller, 1955; Lewis and Keller, 1964; Brown 1966; Duistermaat,
1992] for the ray-tracing counterpart.

In [Bruno et al, 2002] we show that high order summations of expansion (7) can indeed
be used to produce highly accurate results for surfaces and wavelengths of interest in
applications for both TE and TM polarization. Results with machine precision accuracy, which
were obtained from computations involving expansions of order as high as 20, are presented.
Our algorithm is based on systematic use and manipulation of certain Taylor-Fourier series

representations, which are discussed in detail in [Bruno et al, 2002].

1.3.1.2 Integral Equation

The scattered field u=u(x,z) induced by an incident plane wave impinging on the rough
surface y=Sy(x) under TE polarization is the solution of the Helmholtz equation with a Dirichlet

boundary condition. As is known [Voronovich, 1994] the field u(x,z) can be computed as an

13




integral involving a surface density v(x,k) and the Green's function G(x,z,x',z') for the Helmholtz

equation

©)  u(x,2)= j V&, k) (xzés EW1+S,(8)dé

where v(x,k) satisfies the boundary integral equation

10) V@z’k)ﬂ v, k) (xS (00,E, Sy N1+ 5, (E)2dE =~ 5

with o=k sin(8), B=k cos(6™) and k=2m/A is the wavenumber. 6™ is the incidence angle
measured counter-clockwise from the vertical axis. A useful form of the integral equation (10)

results as we factor out the rapidly oscillating phase function

A1) ulxk)+ j ue, k) (x Sy (0),€,8,(E))e PO [14 5 (&) dE =
w(x, k)= e"’“"“m"(x)v(x,k)

which cancels the fast oscillations in all non-integrated terms, and thus suggests use of an

expansion of the form (7). Substitution of the expansion (7) into equation (11) then yields:

+oo

(12) Zkln (v (x)——I" (x, k))

13) I"(xk)= j v (5)—(xs (%),€,8,())e I PEDSHO J14.5,(E)dE

é

To solve equation (12) we use asymptotic expansions for the integrals 1"(x,k), collect coefficients
of each power of 1/k, and then determine, recursively, the coefficients vn(x). We obtain in

[Bruno et al, 2002], an expansion which gives I"(x,k) in terms of derivatives of vn(x).

, -
In (x,k) — %Z qk(;)

14) A q a;o
nw=y"0p,

14




where the functions B,.,(x) are determined from the profile and incidence angle only. We then
find a recursion which gives vn(x) as a linear combination of derivatives of the previous

coefficients Vn-14(X).

Vo(x)=-2

(1 5) Vn (x) — %nz—llg—l—q (x)

1.3.2 Dirichlet to Neumann Map

1.3.2.1 Reduction to first-order normal derivative
The boundary condition for an arbitrary order un(x,z) can be derived by differentiating to

order m the boundary condition for u(x,y,8) and then setting 8=0. In detail we find for the TE

case

9"u™ I mlFP(x) o’u,_,

daz" o pl(m-p)! odzf

16)  u, (x,So(x))= —[F "(x) ](L So(x))

and for the TM case

am+1uinc +i m!Fp (x) ap"'lum“p

oz"on

pl(m—p)! 9zFon ](x,So(x))

a7 %(x,so(x»}(Ff"(x)
n

p=l

The formulas above show that differentiation of high order is required. However using an
argument similar to the one used in the proof of the Cauchy-Kowalesky theorem [Hadamard,
1964; Courant and Hilbert, 1962], we can set up the calculation recursively so that at any given
stage only the Dirichlet and Neumann data are required.

For example in the TE case, the boundary condition for ux(x,z) given in formula (6),
requires the second order derivative of ug(x,z) evaluated on the surface z=Sy(x) with respect to

z. That quantity can be computed if up(X, So(x)) and dug/dz(X, Se(x)) are known on the surface

() = 1, (5,5, (x))
B(x) = —a—a‘;—"(x, 5,()

z=S(x). Differentiating with respect to x (tangential derivative) we find

(18)

15




2 2 az
)3

A'(x )— °(x So () +28, (X) °(x,S @)+ (S, () °(x Sy (X)) +S, (X) °(xS (x))

2

B'(x )— °(xS () +5S, (x) °(xS (x))

Using Helmholtz equation on the boundary yields

82

8 uo (x So(x)) =~ O(x So () = kuy (x,8, (x))

And finally

(19) %(x, Sy(x)) = (4 () + &> 4(x) - Sy (x)B(x) + 28, (x)B (%))
1Z0Z

-1
\2
+(s;)
Note that only x derivatives (that is tangential derivatives) are involved as long we known the

first z-derivative (or normal derivative). This is a classical result of the theory of characteristics

[Hadamard, 1949, chap 7].
To compute the m" derivative of ug with respect to z, the same calculation can be

repeated with

Ax) = aa (1,5, (2)
B = 2 (5,5,

Therefore by keeping two of the successive z derivatives of ug (resp u,in general) we can
compute the z-derivative of ug (resp up) to any order. The main remaining question is therefore

the computation of the z (or normal) derivative of ug (resp up) given the Dirichlet data u(x,So(x))

(resp up(Xx, So(x))).

1.3.2.2 Evaluation of the first-order normal derivative

Our integral representation (9) of the scattered field ug (resp up) does not allow the
calculation of dug/an(x,z) for z= Sy(x) by differentiation under the integral sign since it gives rise
to non integrable terms. A detailed analysis of the origin of the non-integrable terms showed that
they arose from the logarithmic behavior of the Green’s function at the origin. So the main

difficulty reduces to computing the normal derivative in the case where Green'’s function is the
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logarithm. This corresponds to Laplace’s equation, that is Helmholtz's equation with k=0. So we

consider a “scattered” field of the form:

u(x,z)= J-V(Cf)%log(r(x,2,5,50(5)))md6
- ¢
r(x,z,£,85,(8)) = [(x 2% +(Z—SO(§))2:|1/2

Using the analyticity of the logarithm, the Cauchy-Riemann equations relate tangential and
normal derivatives of the logarithm and its conjugate function.

in detail we have

dlog _06
on ot
4 ¢ 4 z=8, (é:)
7] = - 02s
b g e (=58
on, ot,

Therefore we can write:

()= [HE)-005,2&,S,OWI+ S, de
~ :

Noting that

d 1 d G
—0 AN AN SO —_—— e 325,659

After integration by parts, we obtain

)= [T 000.6.5, @)

This expression can now be differentiated under the integral sign with respect to the normal at x

x,2)= j [0V 99 (2 .5, @)de

o0& 8
__ ja‘;?a;"g( 2,E,8,E))dE
and finally
2z == Ia @log(x 2.6,5,E)de
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Therefore the normal derivative of a double layer potential has been expressed as the tangential
derivative of a single layer (with a different density). The normal derivative on the surface can
then be obtained by taking the limit when z tends to So(x).

For the general case where k=0, after isolating the logarithmic part of the Green’s
function, the remainder of the Green’s function (which is the Hankel function minus the
logarithm) is treated by differentiation under the integral sign, as it does not give rise to singular

terms.

1.4 Implementation issues
Taylor-Fourier algebra

The implementation of the high-frequency solver as well as the Dirichlet to Neumann
map is done without discretization points on the surface. Instead we represent the unknown
coefficients of the various current densities of equation (7) as Fourier series. Therefore the
densities themselves are Taylor-Fourier series that is Taylor series in 1/k whose coefficients are

Fourier series. Thus, a Taylor-Fourier series f(x,t) is given by an expression of the form

f(x0)= i f.(x)t" f,(x)= piw . eP*

The manipulations required by our methods include sum, products, composition and as well as
algebraic and functional inverses. These operations need to be implemented with care, as we
show in what follows.

Compositions and inverses of Taylor-Fourier series require consideration of
multiplication and addition, so we discuss the latter two operations first. Additions do not pose
difficulties: naturally, they result from addition of coefficients. Multiplication and division of
Taylor-Fourier series, on the other hand, could in principle be obtained by means of Fast Fourier
Transforms [Press et al, 1992]. Unfortunately such procedures are not appropriate in our
context. Indeed, as shown below, the very rapid decay of the Fourier and Taylor coefficients
arising in our calculations is not well captured through convolutions obtained from FFTs. Since
an accurate representation of this decay is essential in our method --- which, based on high
order differentiation of Fourier-Taylor series, greatly magnifies high frequency components -—-
an alternate approach needs to be used.

Before describing our accurate algorithms for manipulation of Taylor-Fourier series we
present an example illustrating the difficulties associated with use of FFTs in this context. We

thus consider the problem of evaluating the subsequent derivatives of the function
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S(x) = (i cos(kx)j

gL
n=0

through multiplication and differentiation of Fourier series. For comparison purposes we note

that S actually admits the closed form:

acos(x)—1 jz

a* —2acos(x)+1

S(x) =(1+2

The value a=10 is used in the following tests. Table 1 below shows the errors resulting in the
evaluation of a sequence of derivatives of the function S at x=0 through two different methods:
FFT and direct summation of the convolution expression. (Here errors were evaluated by
comparison with the corresponding values obtained from direct differentiation of the expression

by means of an algebraic manipulator).

Differentiation Exact value at x=0 20 modes 30 modes 40 modes
Order FFT Conv FFT Conv FET Conv
2 -7.376924249352232e-01 | 1.3¢-12 | 54e-16 | 1.7e-11 | 2.7e-16 | 1.0e-11 | 2.7e-16
10 4.361708943655447¢+03 | 8.8¢-07 | 1.2e-09 | 1.1e-03 | 6.9e-16 | 3.8¢-03 | 6.9¢-16
20 1.220898732494702¢+12 | 3.1e-02 | 5.0e-05 | 1.4et03 | 2.2e-11 | 1.3e+05 | 8.2e-16

Table 1: Values of the derivatives of the function S(x) at x=0 for various orders of differentiation.
The columns marked 20 Modes, 30 Modes and 40 Modes list the relative errors of the
derivatives computed by summing differentiated Fourier series truncated at 20, 30 and 40
Modes, respectively. Columns FFT and Conv. resulted from use of Fourier coefficients obtained
through FFTs and direct convolution, respectively.

We see that, as mentioned above, use of Fourier series obtained from FFTs lead to
substantial accuracy losses. Indeed, FFTs evaluate the small high-order Fourier coefficients of a
product through sums and differences of “large" function values, and thus, they give rise to
large relative errors in the high-frequency components. These relative errors are then magnified
by the differentiation process, and all accuracy is lost in high order differentiations: note the
increasing loss of accuracy that results from use of larger number of Fourier modes in the FFT
procedure. The direct convolution, on the other hand, does not suffer from this difficulty.
Indeed, direct convolutions evaluate a particular Fourier coefficient a, of a product of series
through sums of terms of the same order of magnitude as a,. The result is a series whose
coefficients are fully accurate in relative terms, so that subsequent differentiations do not lead to

accuracy losses. We point out that full double precision accuracy can be obtained for derivatives
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of orders 20 and higher provided sufficiently many modes are used in the method based on
direct convolutions.

In addition to sums and multiplications, our approach requires use of algorithms for
composition and as well as algebraic and functional inverses of Taylor-Fourier series. In view of
the previous considerations, a few comments will suffice to provide a complete prescription.
Compositions result from iterated products and sums of Fourier series, and thus they do not
present difficulties. As is known from the theory of formal power series [Cartan, 1963], functional
inverses of a Taylor-Fourier series with f, =0 results quite directly once the algebraic inverse of
the Fourier series f;(x) # 0 is known. We may thus restrict our discussion to evaluation of
algebraic inverses of Fourier series. As in the case of the product of Fourier series, two
alternatives can be considered for the evaluation of algebraic inverses. One of them involves
point evaluations and FFTs; in view of our previous comments it is clear such an approach
would not lead to accurate numerics. An alternative approach, akin to use of a direct convolution
in evaluation of products, requires solution of a linear system of equations for the Fourier
coefficients of the algebraic inverse. In view of the decay of the Fourier coefficients of smooth
functions, such linear systems can be truncated and sblved to produce the coefficients of
inverses with high accuracy.

In sum, manipulations of Taylor-Fourier series should not use point-value discretizations if
accurate values of functions and their derivatives are to be obtained. The approach described
in this section calls, instead, for operations performed fully in Fourier space. In practice we have
found the procedures described here prod'uce full double precision accuracies for all operations
between Taylor-Fourier series and their subsequent high-order derivatives in very short

computing times.

1.5 Validation of the Code
1.5.1 High-Frequency Solver

In this section we present the results produced by our algorithm for the energy radiated
in the various scattering directions. We use the periodic Green's function G of period d [Petit,
1980]

- oo ity x—if,z
G(x,z)zzl.d € 5 an=a+n27;£ B, =k -
id, =, P,

to obtain from the Rayleigh series for the scattered field
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(20) U(x, Z) — ZBneianxﬂ'ﬁnz

n=—oc0

Here, the coefficients B, are “~Rayleigh amplitudes", which are given in TE polarization by

1 4 o . o
B =— [ (=1+228, (x)V(x, k)e 5 gy
\ 2d£< 5 SVH)

and in TM polarization by

B, = I
2idp,

d

Iv(x k) o iPnSo() gy
b

0

The required integrals were computed by means of the trapezoidal rule, which for the periodic
functions under consideration is spectrally accurate, and can be computed very efficiently by
means of the FFT. Our numerical results show values and errors corresponding to the

“scattering efficiencies” e,, see [Petit, 1980], which are defined by

B2
en=_an
ﬂl |

and which give the fraction of the energy which is scattered in each one of the (finitely many)
scattering directions. To test the accuracy of our numerical procedures the high-frequency (HF)
results were compared to those of the method of variation boundaries [Bruno and Reitich, 1993]
(MVB) in an “overlap" wavelength region --- in which both algorithms are very accurate.
Additional results, in regimes beyond those that can be resolved by the boundary variation
method are also presented in [Bruno et al, 2002].

Note that the HF and MVB methods are substantially different in nature: one is a high
order expansion in 1/k whereas the other is a high order expansion in the height h of the profile.
In the examples that follow we list relative errors for the computed values of scattered energies
in the various scattering directions.

The results below show examples of accuracies reached by our high frequency solver.
The scattering surface, the polarization and angle of the incident field and height to period ratio
as well as the wavelength to period ratio are indicated above the table of results. Note the
double precision accuracies reached with expansion of the order of 15. The order zero
calculation corresponds to the classical Kirchhoff approximation (or tangent plane
approximation). Note the substantial gain in accuracy provided by our solver over this classical

approximation.
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Scattering surface  TE Polarization Normal Incidence

RN VAN 2NN 2N

h/d = 0.025 Ad =0.025
Scattering Scattered
Direction # Energy Order0 | Order1 | Order3 | Order5 [ Order9 [ Order11
0 4.843033211037387¢-02 { 1.9¢-3 4.8¢-6 1.9e-8 | 4.2e-11 | 1.6e-15 | 0.0e-16

4.533269321280629¢-02 | 2.3e-3 2.4e-6 8.3e-9 | 2.4e-11 1.8e-15 | 0.0e-16

8.263582066556663¢-02 | 8.3e-4 3.0e-6 1.3e-8 3.5¢e-11 | 3.4e-16 | 0.0e-16

1.032017750281185e-03 | 1.8e-2 7.4e-5 3.7e-8 1.3e-10 | 9.7e-15 | 1.0e-15

1.019744820363490e-01 | 1.0e-3 1.3e-6 | 7.1e-10 | 1.6e-12 | 0.0e-16 | 0.0e-16

1.396970992023250e-01 | 1.2e-4 3.4e-6 5.1e9 8.7e-12 | 0.0e-16 | 0.0e-16

7.578492663719054e-02 | 7.9e-4 6.5¢-6 1.3e-8 | 2.6e-11 | 3.7e-16 | 0.0e-16

N[N BRI =

2.361867030378681e-02 | 1.3¢-3 1.0e-5 2.3e-8 5.5e-11 | 8.8e-16 | 0.0e-16

The run time for the calculation of order 11 was 3 seconds on a Dec Alpha 600MHz.

Scattering surface ~ TM Polarization Normal Incidence
h/id =0.025 Ad =0.0251
Scattering Scattered
Direction # Energy Order 0 Order 1 Order 3 Order 5 Order9 | Order 11
0 4.626620392423562¢-02 9.3e-5 3.3e-7 2.5¢-10 2.0e-13 0.0e-16 0.0e-16

4.784012804881663¢e-02 1le-4 2.0e-7 1.7e-10 | 5.6e-14 | 0.0e-16 | 0.0e-16
8.098026673047228e-02 | 7.2e-5 4.4e-7 3.6e-10 | 2.5e-14 | 0.0e-16 | 0.0e-16
1.530238230277614e-03 | 2.3e-5 9.3e-9 2.5e-12 1.7e-15 { 0.0e-16 | 0.0e-10
1.044707459140400e-01 1.1e-4 1.3e-7 2.6e-10 | 2.5e-13 | 0.0e-16 | 0.0e-16
1.392864901043021e-01 1.9¢-5 4.4e-8 2.6e-10 | 2.6e-13 | 0.0e-16 | 0.0e-16
7.439074834360192¢-02 | 6.0e-5 2.0e-7 49e-11 | 45¢-14 | 00e-16 | 0.0e-16
2.290107975972599%¢-02 | 3.0e-5 1.3e-7 2.3e-11 | 3.7e-14 | 6.9¢-18 | 0.0e-16

NN e o=

The run time for the calculation of order 11 was 3 seconds on a Dec Alpha 600MHz.

Scattering surface  TE Polarization Normal Incidence
h/d =0.04 Ad =0.0251
Scattering Scattered
Direction # Energy OrderQ | Orderl | Order5 | Order9 | Order11 | Order1s
0 1.983702874853860e-01 1.4¢-3 6.7e-6 6.3e-10 1.8¢-13 5.0e-15 0.0e-16

2.125625186015414¢-02 | 4.3e-3 7.3¢-6 8.6¢-10 | 4.6e-14 | 49e-16 0.0e-16
5.109656298137152¢-02 | 4.2¢-3 S53e-6 1.3¢-9 35¢e-14 | 69¢-15 0.0e-16
1.350594564861170e-01 11e-3 30c-6 1.8-10 | S.1e-14 | 6.9e-16 00e-16
1.670755436364386e-02 | 4.3¢-3 9.0e-6 1.5¢-9 1.8¢-13 1.0¢-14 0.0e-16
1.041839113172000e-01 87e-4 Lle-5 47¢-10 | 3 8-14 | 00e-16 00e-16
3.029977474761340e-02 | 7.6e-4 Lle-5 48¢-10 ] 1.0¢-15 2.0¢-15 0.0e-16
2.828409217693459¢-02 | 2.5e-3 3.2e-5 1.8e-9 3.5e-14 | 4.6e-15 6.1e-16

NN
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The run time for the calculation of order 15 was 6 seconds on a Dec Alpha 600MHz.

Scattering surface ~ TM Polarization Normal Incidence
hid = 0.04 Ad=0.0251
Scattering Scattered
Direction # Energy Order0 | Order1 | Order5 | Order9 | Order 11 | Order 15
0 1.985778821348800e-01 2.6e-4 2.1e-6 1.le-11 1.8e-15 1.0e-15 1.2e-15

2.203189065423864e-02 | 9.4e-5 1.3e-7 1.9¢e-13 | 4.5¢e:16 | 4.9¢-16 4.7¢-16
4.989624245086630e-02 | 1.5e-4 58¢-7 | 6.8e-12 | 3.4e-16 | 4.2e-16 4.9¢-16
1.363942224141270e-01 1.5¢-4 4.1e-7 9.1e-12 | 1.5e-15 9.2e-16 9.2e-16
1.685456723960805¢-02 | 7.2e-5 29¢e-7 | 2.5e-12 | 4.6e-16 | 2.5¢e-16 2.3e-16
1.040033802018770e-01 } 9.3e-5 1.0e-7 87e-12 | 3.1e-16 | 2.1e-16 3.1e-16
2.994981016528542e-02 | 2.3e-5 4.6¢-8 5.6e-12 | 4.2e-17 | 3.2e-16 2.9¢-16
2.795532080716518e-02 | 7.0e-5 43e-7 | 3.5¢-13 | 9.0e-17 | 3.1e-17 4.1e-17

~3 N L | B9 N =

The run time for the calculation of order 15 was 5 seconds on a Dec Alpha 600MHz.

1.5.2 Dirichlet to Neumann Map

To test the accuracy of the Dirichlet to Neumann map, the Rayleigh expansion (20) of
the scattered field was used again. Here we choose surfaces for which the Rayleigh hypothesis
holds that is surfaces for which the Rayleigh expansion (20) is uniformly convergent up to the
surface itself cf. [Petit and Cadilhac, 1966; Millar, 1969; Kyurkchan et al, 1996]. In that case the
Rayleigh series can be differentiated with respect to the normal and the results from the
Rayleigh series and the integral formulation described in section 1.3.2 can be compared. Just
as in the previous section the coefficient B, are obtained from the method of variation of
boundary. In detail, since the normal derivative of the field on the surface is a periodic function
of the tangential variable x, we compared the Fourier coefficient of that function as produced by
the differentiation of the Rayleigh series and the methods of section 1.3.2. The results
presented below show the absolute error for the first 9 Fourier coefficients of this function for
two different surfaces. The agreement is quite satisfactory given that the accuracy of the
coefficient B, is 15~16 digits but they are multiplied by k=2n/A= 21/0.025 ~ 251.
So for example the relative error on the first (and largest) coefficient is 1.4e-12/251=5.6e-15.
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Scattering surface  TE Polarization Normal Incidence

N ZN 2 2N N2 N2 N\

h/d =0.025 Ad =0.025

0 2.513274122871854e+02 1.4e-12

1 2.467789729688969¢-01 4.1e-13

2 4.853137888184910e-04 4.6¢-12

3 2.692275458156496¢e-06 2.6e-13

4 2.418002116077943¢-08 2.1e-12

5 3.012222915203911e-10 2.5e-12

6 3.142218774380850e-12 1.5¢-12

7 5.094686950567004e-13 S.1e-13

8 1.367272645883451¢-13 1.4e-13

9 2.246949775547679¢-14 2.2e-14
Scattering surface  TFE Polarization Normal Incidence
h/d = 0.04 Ad = 0.025

2.5132741228718315e+02 8.8e-13
9.8711672408589575¢-02 7.1e-13
3.9503306957875781e-01 1.6e-13
7.0040665308186701e-04 7.9e-13
1.2489143602822332¢-03 1.6e-13
9.6829269045451665e-06 2.4e-13
1.1239693826031570e-05 2.5e-13
1.9232684834524107e-07 2.6e-13
1.6608798644321709¢-07 1.6e-13
4.9820286787390020e-09 6.8e-14

Ok I_NNjn s |wivo |— |

1.5.3 Multi-scale algorithm

Finally the multiple scale algorithms were integrated and very high accuracies were
indeed obtained. We present below two examples of highly accurate multiple scale geometries
scattering in TE illumination. The errors listed are the absolute error as compared to the method
of variation of boundaries. The results were obtained by summation of the Taylor series (1) to
the order in 1/k specified in the top row. The two scale results were obtained by using Kirchhoff

approximation (thatis order 0 in 1/k) and a first order expansion in the roughness h. The
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difference between the two scale column and the Order 1 column comes from the fact that we

used an expansion of order 20 in the high-frequency solver for Order 1 as opposed to order 0

for the two scale case.

h/d = 0.0252

Scattering surface

Ad=0.025

AVAVAVAVAVAVAVAVAVAV

Scattering Scattered Two

Direction # Energy Scale Order1 | Order2 | Order4 | Order6 | Order8
0 4.833824308716315e-02 1.8¢-4 | 9.2¢-5 2.1e-8 2.3e-12 | 5.8e-14 | 6.0e-15
1 4.524676580264179¢-02 2.0e-5 | 8.7e-5 2.0e-8 2.0e-12 | 4.0e-14 | 2.3e-15
2 8.248342098822989E-02 2.3e-4 | 1.6e-4 3.2¢e-8 32e-12 | 6.6e-14 | 8.8e-15
3 1.053390492569949E-03 1.7e-5 | 2.0e-6 2.2e-8 34e-12 | 89¢e-15 | 8.8e-16
4 0.101853442231311 8.7e-5 1.9¢-4 2.3e-8 6.0e-12 | 3.0e-14 | 5.5e-15
5 0.139564830538028 2.8¢-4 | 2.6e-4 6.3¢e-8 1.3e-11 | 2.7e-14 | 8.8e-15
6 7.574080330783492E-02 2.0e-4 | 1.4e-4 6.0e-8 1.1e-11 1.5e-14 | 8.9e-15
7 2.357615851308177E-02 7.5¢-5 | 4.4e-5 8.6e-9 8.1e-13 | 2.4e-14 | 1.5¢-14

The scattering surface was in that case defined by z=0.025(cos(2nx)+0.01cos(20mx)). The

calculation of order 8, which yielded 14 digits of accuracy, took 1 hour 9 minutes 54 seconds on

a 600 MHz machine. A result with 12 digits of accuracy was obtained for order 4 and took 5

minutes and 51 seconds on the same machine. The large difference in timing is due mainly to a

reduction in number of Fourier modes used. Whereas 30 modes suffice for 12-digit accuracy,

100 modes are necessary for 15-digit accuracy.

h/d = 0.0101

NAYVAVVAPN AV AVVAVNAVVAVYAY

Scattering surface

Ad = 0.025

Scattering Scattered Two

Direction # Energy Scale Order1 | Order2 | Order4 | Order6
0 0.198901761348164 2.1e-4 | 6.1e-5 4.3¢-8 1.1e-12 | 3.5¢-14
1 2.118863974374862E-02 8.4e-5 | 6.5¢-6 4.9¢-9 1.2e-13 | 3.1e-15
2 5.064428936060158E-02 2.3e-4 1.5¢-5 3.4e-9 8.2e-13 | 2.4e-14
3 0.135474001366087 1.1e-4 | 4.1e-5 3.3e-9 8.2e-13 | 3.7e-14
4 1.614783623594695E-02 6.5¢-5 5.0e-6 4.2e-9 9.9e-13 | 5.7e-14
5 0.104163054003108 1.2e-4 | 3.2e-5 8.1e-10 | 5.6e-14 | 2.6e-14
6 3.084758570010842E-02 3.2e-5 9.3¢-6 4.2e-8 8.5¢-13 1.9¢-13
7 2.782604772500211E-02 7.8e-5 8.5¢-6 3.2e-8 7.4e-13 | 6.3e-14

In this next example, the scattering surface was defined by

z=0.01*(cos(2mx)+cos(4nx)+0.025cos(20mx)). The calculation of order 6, which yielded 14 digits
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of accuracy, took 55 minutes and 34 seconds on a 600 MHz machine. A result with 12 digits of

accuracy obtained for order 4 took 13 minutes and 17 seconds on the same machine.

1.6 Exploitation and Follow on

A natural transition program is to correlate polarized radar backscattering returns to
relevant surface characteristics, with specific focus on ocean surfaces, through the utilization of
an appropriately validated highly efficient and accurate algorithm specially designed for the
solution of scattering problems from multiple scale surfaces. The overall objective is to improve

the interpretation and predictive capabilities from radar remote sensing returns.

1.6.1 Modeling of Doppler spectrum

The time evolution of the polarized scattering returns is of great use in analyzing the
distribution and evolution of scatterers on the ocean surface. Indeed, the power spectrum of the
polarized backscattered returns, also known as the Doppler spectrum, is routinely used in
experiments for diagnostic and analysis of the distribution and speed of the scatterers on the
moving surface, cf. [Lee et al, 1997a; Rozenberg et al, 1996; Lee et al, 1996; Lee et al, 1997b;
Liu et al, 1998; Lee et al, 1995; Ja et al, 2001; Duncan et al, 1999].

TRW'’s Ocean technology department, a world-renown center of excellence for ocean
hydrodynamics, has developed many ocean simulation tools based on the formulations
described in [Longuet-Higgins and Cokelet, 1976] and [Zhakarov, 1968]. These algorithms are
design to model the hydrodynamic evolution of a variety of scales on the water surface. The
coupling of these hydrodynamic models to the TRW high-order high frequency multi-scale
electromagnetic numerical solver will provide a powerful, efficient and extremely accurate
algorithm for the modeling and analysis of Doppler spectra. The high accuracy delivered by the
scattering solver is necessary due to the range of scattering returns typically observed to be
between —60 dB to —100 dB. This means that to compute reliably simulation results, an

accuracy of 10 digits is necessary at the very least.

Once the Doppler spectrum code is implemented, a series of hypothesis regarding the
cause and nature of the HH/VV ratio intermittent spiking can be addressed. In particular, the
broadening of the velocity distribution introduced by the scattering process can be analyzed.
Indeed, since the propagation of water waves will be performed numerically the distribution of
velocities at every point along the profile can be evaluated as a function of time. The power
spectrum of this distribution of velocities can then be compared to the power spectrum of the

scattering returns for each polarization (the Doppler spectrum). To our knowledge, the basic
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understanding of the relationship between the distribution of velocities on the water surface and
the associated Doppler spectrum for HH and VV polarization obtained from the scattering
returns has never been undertaken. It will be of immediate interest to the ocean scattering and
remote-sensing communities that seeks to interpret measured Doppler spectra in terms of

surface characteristics.

1.6.2 Return from statistically described rough surfaces

The computational speed of our multi-scale algorithm allows the investigation of the
surface configuration mechanisms responsible for distinct radar return signatures. In particular,
detailed parametric studies can be performed about the dependence of the scattering returns on
the surface statistical characteristics such as their spectral distribution cf. [Pierson and
Moskowitz, 1964; Donelan and Pierson, 1987; Jahne and Riemer, 1990; Apel, 1994 and
Elfouhaily et al, 1997]. One outstanding, yet unsolved, problem in that field concerns the
retrieval of wind speed and direction from radar measurements. A number of empirical models
have been proposed cf. [Apel, 1994] and more recent measurements have been made cf.
[Chaudry and Moore, 1984; Masuko et al, 1986; Woiceshyn et al, 1986; Carswell et al, 1994].

However the establishment of a reliable empirical relationship between radar cross
section and wind speed and direction remains elusive cf. [Rufenach, 1998; Phillips, 1988]. The
discrepancy can be attributed to two main factors. First the computations of the radar cross
section are all based on two-scale models. These models rely on the distribution of short
“Bragg” waves, which spectrum is still a matter of active research cf. [Pierson and Moskowitz,
1964; Donelan and Pierson, 1987; Jahne and Riemer, 1990; Apel, 1994 and Elfouhaily et al,
1997]. Of course, the interpretation of measured data and the retrieval of wind characteristics

require a model of the dependence of the radar returns on the wind characteristics.

We propose to alleviate the errors introduced by the two-scale scattering model by
replacing the scattering module by our highly accurate solver. The expected outcome of that
study is the evaluation of current ocean spectra with full electromagnetic account of all scales
on the surface at X-band. Furthermore accurate scattering computations will permit to test the
current functional forms of the backscattered cross section as a function of wind speed and to
determine their range of validity. This will help the wind retrieval (inverse) problem, which is

poorly understood at this point cf. [Rufenach, 1998].

It is of interest to note here that the recent studies we carried out with a simplified
version of our algorithm, for periodic surfaces with slopes in the range 0.01-0.3, have already
yielded results not expected from the predictions of classical theories cf. [Sei et al., 1999]. In
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particular, these results provide the first rigorous theoretical evidence of anomalous absorption
of polarized EM radiation. This result is potentially of strong relevance to the ocean scattering
community. Our results show that significant effects on the backscattering polarization ratio
(HH/VV or TE/TM) can arise from modulated short waves, that is, corrugated surfaces with
features similar to those abundant in ocean surfaces (cf. Figure 4 and [Sei et al., 1999]). The

effects depend on incidence angle, dielectric constant and specific configuration characteristics.

Figure 2 shows an instance of the results we have obtained. It illustrates the increase in
the ratio of HH/VV, obtained for the specific wavetrain of Figure 4, for a particular region of
slope values (ka = m h/d, where h is the height and d the period of the wavetrain). The figure
also shows the constant, and orders of magnitude smaller, value of HH/VV that would have
been predicted by either first order theories or the classical theory of Rice. These results are all
the more relevant in view of the recent experimental measurements that have demonstrated the
strong contribution to the radar return from incipient or actively breaking water waves cf. [Lee et
al, 1997; Liu et al, 1998].

These waves are nonlinear by nature, with large slopes (ka ~ .1) consisting of
wavetrains of different scales and can be directionally modulated. The experimental results
show “sea spikes” in potential agreement with our calculation. The “sea spikes” are regions of
large HH/VV polarization ratios and sporadically high HH returns for near grazing angles in

direct contradiction with first order perturbation theories.

EAVAVAVAVES

Figure 4. Periodic modulated wave train
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Figure 5. Simulated scattering returns for surface shown in Fig. 4

and comparison with first order and classical theories.
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Abstract. A new method is introduced for the solution of problems of scattering
by rough surfaces in the high-frequency regime. It is shown that high order
summations of expansions in inverse powers of the wavenumber can be used
within an integral equation framework to produce highly accurate results for
surfaces and wavelengths of interest in applications. Our algorithm is based on
systematic use and manipulation of certain Taylor-Fourier series representations
and explicit asymptotic expansions of oscillatory integrals. Results with machine
precision accuracy are presented which were obtained from computations involving

expansions of order as high as twenty.




1. Introduction

Computations of electromagnetic scattering from rough surfaces play important roles in a wide
range of applications. including remote sensing, surveillance, non destructive testing, etc. The
problem of evaluating such scattering returns is rather challenging — owing to the multiple-scale
nature of rough scatterers, whose spectra may span a wide range of length-scales [Valenzuela,
1978].

A number of techniques have been developed to treat limiting cases of this problem. For
example, the high frequency case, in which the wavelength A of the incident radiation is much
smaller than the characteristic surface length-scales, has been treated by means of low order
asymptotic expansions. such as the Kirchhoff approximation. On the other hand, resonant
problems where the incident radiation wavelength is of the order of the roughness scale have
been treated by perturbation methods, typically first or second order expansions in the height A
of the surface [Rice, 1951; Shmelev, 1972; Mitzner, 1964; Voronovich, 1994]. However, when a
multitude of scales is present on the surface none of these techniques is adequate. and attempts to
combine them in a so-called two-scale approaches have been given [Kurvanov, 1963; McDaniel
and Gorman, 1983; Voronovich, 1994; GiI'Man et al., 1996]. The results provided by these
methods are not always satisfactory, owing to the limitations imposed by the low orders of
approximation used in both, the high-frequency and the small perturbation methods.

A new approach to multi-scale scattering, based on use of expansions of very high order in
both parameters A and h, has been proposed recently [Bruno et al., 2000]. These combined
methods, which are based on complex variable theory and analytic continuation, require nontriv-
ial mathematical treatments; the resulting approaches, however, do expand substantially on the

range of applicability over low order methods, and can be used in some of the most challenging
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cases arisingv in applications. Perturbation series of very high-order in h have been introduced
and used elsewhere to treat resonant problems — in which the wavelength of radiation is com-
parable to the surface length-scales [Bruno and Reitich, 1993; Sei et al., 1999]. In this paper
we focus on our high-order perturbation series in the wavelength A, which, as we shall show,
exhibits excellent convergence in the high-frequency, small wavelength regime. The combined
(h, \) perturbation algorithms for multiscale surfaces, which require as a main component the
accurate high frequency solvers presented in this paper, are described in [Bruno et al., 2000].
Our approach to the present high-frequency problem uses an integral equation formulation,

whose solution v is sought and obtained in the form of an asymptotic expansion

+00 .
v(z, k) = eorBf(@) > (@) (1)
n=p

n ?

with p = —1 for TM polarization and p = 0 for TE polarization. This expansion is similar in

form to the geometrical optics series [Lewis and Keller, 1964]

ikS = un(Z,y) ’
u(x’yi k;) e elk (z,y) Z —'kn—’a ) (2)
n=0

where S = S(z,y) is the unknown phase of the scattered field. Note that the phase of the
density v of (1) is determined directly from the geometry and the incident field and, unlike that
in the geometrical optics field, it is not an unknown of the problem. In particular, the present
approach does not require solution of an eikonal equation [Vidale, 1988; VanTrier and Symes,
1991; Fatemi et al., 1995; Benamou, 1999], and it bypasses the complex nature of the field of
rays, caustics, etc.

The validity of the expansion (2) has been extensively studied [Friedlander, 1946; Luneburg,
1949a; Luneburg, 1949b; Van Kampen, 1949; Luneburg, 1964]; in particular, it is known that

equation (2) needs to be modified in the presence of singularities of the scattering surface.
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To treat edges and wedges, for example, an expansion containing powers of k—1/2 [Luneburg,
1949b; Van Kampen, 1949; Keller, 1958; Lewis and Boersma, 1969: Lewis and Keller, 1964] must
be used; caustics and creeping waves also lead to similar modified expansions [Kravtsov, 1964;
Brown, 1966; Ludwig, 1966; Lewis et al., 1967; Ahluwalia et al., 1968]. Proofs of the asymptotic
nature of expansion (2) were given in cases where no such singularities occur [Miranker, 1957;
Bloom and Kazarinoff, 1976]. In practice only expansions (2) of very low orders (one, or, at most
two) have been used — owing in part to the substantial algebraic complexity required by high
order expansions [Bouche et al., 1997]. First order versions of the expansion (1), on the other
hand were treated in [Lee, 1975; Chaloupka and Meckelburg, 1985; Ansorge, 1986; Ansorge,
1987].

The region of validity of our ansatz (1), on the other hand, corresponds to configurations where
no shadowing occurs. At shadowing the wave vector of the incident plane wave is tangent to the
surface at some point, which causes certain integrals to diverge; see Section 4. Thus, a different
kind of expansion, in fractional powers of 1/k, should be used to treat shadowing configurations:
a first order version of such an expansion was discussed in [Hong. 1967]; see [Friedlander
and Keller, 1955; Lewis and Keller, 1964; Brown, 1966; Duistermaat. 1992] for the ray-tracing
counterpart.

In this paper we show that high order summations of expansion (1) can indeed be used to
produce highly accurate results for surfaces and wavelengths of interest in applications for both
TE and TM polarizations; in Section 7, for example, we present results witrh machine precision
accuracy, which were obtained from computations involving expansions of order as high as 20.
Our algorithm is based on systematic use and manipulation of certain Taylor-Fourier series

representations, which we discuss in Section 5. Operations such as product, composition and
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inversion of Taylor-Fourier series lie at the core of our algebraic treatment; as shown in Section
5 certain numerical subtleties associated with these operations require a careful treatment for
error control.

In order to streamline our discussion we first treat, in sections 2 to 5, the complete formalism
in the TE case; the changes necessary for the TM case are then described in Section 6. In
detail, in Section 2 we present our basic recursive formula for the evaluation of the coefficients
vn(z) of equation (1) for the TE case. These coefficients depend on certain explicit asymptotic
expansions of integrals, which we present in Sections 3 and 4. A discussion of the Taylor-Fourier
algebra then ensues in Section 5. As we said, the modifications necessary for the TM case are

discussed in Section 6. A variety of numerical results for both TE and TM polarizations, finally,

are presented in Section 7.

2. High-Frequency Integral Equations — TE case

The scattered field © = u(z,y) induced by an incident plane wave impinging on the rough
surface y = f(z) under TE polarization is the solution of the Helmholtz equation with a Dirichlet
boundary condition. As is known [Voronovich, 1994] the field u(z,y) can be computed as
an integral involving a surface density v(z, k) and the Green’s function G(z,y,z',y') for the

Helmholtz equation

o) = @ k) Lo a0, L+ () s (3)

—x on'

where v satisfies the boundary integral equation

AEB 4 [ S @) fEW I+ () e R’ = =81 (g




In what follows we will use the relations

98 (4, 1(@), ', FDVI + (F(@)? =~ ghlkr)g(e. )

on'

r=+(@" —12)%+ (f(z') - f(z))? h(t) = tHi(¢) H{ Hankel function

/) — f(wl) - f($) - (*’LJ _ :I))f’(:(,'/) o = ksin(@) 8 — k:COS(G),

9(z,z =

where 6 is the incidence angle measured counter-clockwise from the vertical axis, and k = 27/A

is the wavenumber.

A useful form of the integral equation (4) results as we factor out the rapidly oscillating phase

function etox~i8f(z)

L ; [+oo o
(e=Ctoa=i07@Ny (, k)) -% h(kr)g(a, ) (e 0By (! 1)) da' ="=2,  (5)
—oQ

which cancels the fast oscillations in all non-integrated terms, and thus suggests use of an ansatz

of the form

joz—i6(z) N~ Va(®) (©)

viz,k) = e o

n=0
Substitution of the ansatz (6) into equation (5) then yields

+ool

where

+00

I'(z,k) = / h(kr)g(z, g )ete(@ —2) =B =@y, (o,

—00
To solve equation (7) we use asymptotic expansions for the integrals I™(x. k), collect coefficients

of each power of 1/k, and then determine, recursively, the coefficients 1, (). In detail, we obtain

in Section 3 an expansion which gives I"(z, k) in terms of derivatives of v,(z)

n 1 IR IHx) n 4 0, (x
I'(z,k) = Z ) qkq where Ij(z) = gEO BIEE )Bq_g(l‘) (8)
q: -
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where the functions B,—¢(z) are determined from the profile and incidence angle only. (We
point out, however, that our algebraic treatment yields an expression for I7(x) which, although
equivalent to that of (8), is different in form; see Remark 1 and equation (25).) From (7) and (8)

we then find a recursion which gives vy, (z) as a linear combination of derivatives of the previous

coefficients vp_1-¢(T)
4

1/0(:1,‘) = =2

. n—1 .
i —1-
vn(z) = 5 Z Iy 1=4(g).
\ g=0
Use of the Taylor-Fourier algebra of Section 5 allows us to perform accurately the high order
differentiations required by our high-order expansions; the needed expansion (8) of the integral

I™, in turn, is the subject of the next section.

3. Asymptotic expansion of I"(z, k)
We first split the integral I" as a sum I™ = I” 4 I} where

z ; ' : ’
I"(z,k) = / h(kr)g(a:,:c’)em(z_x)“’ﬂ(f(x)_f(z))un(a:’)dm'

—00

+00 . : ,
I (z, k) = / h{kr)g(z, g )etele —2)=iB(f (&)= f =)y, (2')dz'
xT
We evaluate in detail the asymptotic expansion for I%(z, k); the corresponding expansion for I”
then follows analogously.

Using t = 2’ — z we obtain
+00 L
L) = [ k@, )gla,a + et PIETDy o+ (10)
0

where

$1(,t) = /2 + (flz+1) — f(2)2




For the treatment presented here, f(z) is assumed to satisfy the condition

¢ (z,t) = aqﬁ—*(,)(f’—ﬂ >0 for t >0 (11)

so that the map t — ¢ (z,t) is invertible. (This condition is generally satisfied by rough surfaces
considered in practice: for a sinusoidal profile f(z) = acos(z), for example, the inequality (11)

holds as long as a < 1.) Then setting
u = ¢i(z,1) = t = ¢7'(z,u)

equation (10) becomes

+00 -1
n 9($,$+¢+ (:L‘,'u,)) -1 i qb—l zu)—i3 f:c—I—'_l z,u))—f(z
I+(”””“)"/o Mk i) T o () 7 ) =i3( (a7 @) 1(e) gy,

Calling

N

g(z, 2 + ¢3 (z,u))

vn(x o T, U
P i) o)

Fi(z,u)

v, = (fla+ 7' (@w) = f(2) cos(6) ~ ¢3! (z. w)sin(0),
I (z,k) reduces to

+co X
I (z,k) = A F™ (, u)h(ku)e~ R0+ @0) gy,

Remark 1 The unknown v,(z) is contained as a factor in the function F}(z,u). Notation (12)
is useful in that it helps present the integrand as a product of two distinct factors: a non-

oscillatory component F7(z,u) and an oscillatory component h(ku)e~kv+(@u),

In addition to (11) we assume the profile y = f(z) is an analytic function — so that the map

u — FT(z,u) is analytic as well. Using the Taylor series

o0 IIL(z,0)

m=0
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the integral Ij‘_ (z, k) takes the form

iy 400 —
Ne,k) = > pfn(x) / u™h(ku)e FYT (@) gy
m=0 0
(14)
— pn m( +oo mh(v)e—ikdf"(z,%)d
= Z km—H v v.
m=0
Thus, the 1/k expansion of I7 results from the corresponding expansions of the integrals
+o0 :k P
At(k,m,z) = / v™h(v)e Y @) dy. (15)
0

These non-convergent integrals must be re-interpreted by means of analytic continuation —in a
manner similar to that used in the definition and manipulation of Mellin transforms [Bleistein

and Handelsman, 1986]. An explicit expansion of A*(k,m,z) is given in the following section.

3.1. Expansion of the integrals /7 and I”

Using the Taylor expansion of ¥ (z,u) Z ¥ (z)— in the variable u together with
the identity ¥ (z,0) = 0, expansion of the functlon exp(—z(kzp+(:1:, 7 - Y7 (z)v)) leads to the
expression

R o g @ <1+zk nz n+f) (16)
1

for certain (function) coefficients azn(w). Then, defining

400 X
Af(p,z) = / WPh(v) e @ gy (17)
0
and
" af (z
CAf(m,z) =) Z’Z'( )Af,"(m—i-n—f-é,z) (18)
=0 '
we obtain

2 At(m, )

A+(k9m,$) = AE)*_(m7 z) + kn )

n=1
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and the series

I (z,k) = Z (Z P o o(2)AF (g — ¢ z)) k01 (20)

q=0 \{=0

for I results. We see that this expansion is given in terms of the integrals (17) which, like
those of the previous section, are non-convergent and require analytic continuation. An explicit
expression for this integral as a function of p and z is given in Section 4.

The case of I" (z,k) can be treated similarly: we use t = z — 2’ and the definitions

b (z,t) = 2+ (fla—t)— f(2))

o S@mE=dlww)
) = LR P = 97 )

v (z,u) = (flz— ¢ (z,u) - f()) cos(8) — 6=} (z,u) sin(9).

Then, letting a,, (z) be the coefficients in the expansion of e~V (@3)

e—-ikd)“(x,%) — e—iwl z)v (1+Zk n Zn( ) n+€>,

1 £=1 e'

calling

+o0 3 V_
Ay (p,z) = /0 vPh(v) e ™1 @y

and defining the functions A, (m,z) by

- A pl\Z)  _
Ay (m,z) =) ’Z! Ay (m+n+4,z). (21)
we obtain the expansion for the integral I”:

I'(z Z (an)q [x)A; (g -4, a:)) k9L, (22)
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3.2. A simplified expression for the integral I"(z, k)
The expansions for I7(z,k) and I”(z, k) can be combined into an expression which depends

only on the functions p;'l"e(m), azn(:c) and
5(¢,z) = A7 (¢,2) + (-1)74g (q, ). (23)

Indeed, using the identity ¢~ (z,t) = ¢*(z, —t) we find

v (z) = (D% (@), ag,(e) = ()%, (@), and  p,(x) = (~1)p] (). (24)
The 1/k-expansion of I"(z, k) now follows from (20), (22) and (24)
Iz, k) = IY(z,k)+I%(z, k)
+o0
= Z (anq (2)Af(g—¢,z) + Py e )A[(q—f.:ﬁ)) Ea-t
+o00 g »
= Z an .- o ( Fqg—t,z) + (—l)q_(A{_(q — 4. ;1:)) et
Using (18), (21) and (24) we thus obtain our key formula
+o00 I"(SU)
I'(z, k) = Z 1:‘1“ , where
(I_
(25)

¢
anq F ( q+j7‘11")> .
As we have seen, the function S(m, z) is defined by divergent integrals: an explicit expression
for this function is given in the following section. The coefficients a Tm and py o, in turn, are

defined as products, quotients, compositions and inverses of certain power series expansions;

accurate methods for such manipulations of power series are given in Section 5. Note that
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aj:e(z) and S(g + j,z) depend on the scattering profile and incidence angle only; the coefficient

p,f,m depends on the geometry and the derivatives of the coefficient vy, of order < m.

4. Computation of S(q,z).

Interestingly, a closed form expression can be given for the function S(g,z). Indeed, since

Y7 (z) = ¥ (z) we may write

q even

S(q,l‘) = A(T(q,m) + (_1)qA0—(qa "E) :
+00 , .
- / vih(v) (7@ 4 (—1)7eT @) gy,
0
or,
r +o0
2/ VIt HL(v) cos(yif (z)v)dv
0 ,
S(q,2) =

~2i /+oo vt HY(v) sin(3p; (z)v)dv
\ 0

q odd.

Using formulae (11.4.19) and (11.4.16) in [Abramowitz and Stegun, 1964] together with the

Taylor expansion of sin(z) and cos(z), we then obtain the closed form expression

,

\

2q+2 Z(_l)k (21/}1 (.73)) 2
= @k plz2E-g 22’“ 9
2k +q+4

Ly (z))2+1 T(—5—)

+00
—j 24+2 -

q even

(26)

q odd.

Thus S(g,z) is a series in powers of ¥ (z), whose coefficients can be evaluated explicitly in

terms of the I' function.

Remark 2 It is easy to see that the radius of convergence of the power series in equation (26)

is 1, and that the series actually diverges for ¥ = 1. This condition has an interesting physical
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interpretation; since

f'(x) cos(B) — sin(B)

the condition ¥} (z) =1 is equivalent to

’

flz) = —cot(6)

or, equivalently, that some rays in the incident plane wave are tangent to the scattering surface.

Alternatively, using the asymptotic ezpansion

r ()
H{(v) ~ \/ﬂ_: 4
we see that the oscillatory term in A (p, ) is ei(l_wr(z))“, which becomes non-oscillatory for
1[1{'”(33) =1, and thus causes the integral to diverge. Therefore, as mentioned in the introduction,
the present algorithm applies only to configurations for which no shadowing occurs. Eztension

of these methods to configurations including shadowing are forthcoming.

Remark 3 In addition to the infinite series (26), the function S admits a finite closed form
representation, namely:

S(g, ) = (1 =93~ @32 p ()

where Py(z) is a polynomial of degree equal to the integer part of q/2. These polynomials can be

computed easily and efficiently through a Taylor expansion of the product S(q,v)(1 — ?)(a+3/2),
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For ezample, the first few values of ¢ we have
50,9) = (1-9*)7%22

S(L,y) = (1-9*)75%(-6)

5(2,9) = (1—¢?)~7/2.(—6 + 249

Il

S(3,9) = (1 —2)~%2.(90 4 120¢)
S(4,9) = (1 =) ~1/2,(90 + 1080% + 720¢?)

S(5,9) = (1 —9?)~13/2,(-3150 — 12600¢) —~ 50401)2)

5. Computation of p,‘;q_g and a;fe: Taylor-Fourier algebra

As indicated previously, the functions P:,q_z and a;-te in equations (12), (13) and (16) can
be obtained through manipulations of Taylor-Fourier series, which we define, quite simply, as
Taylor series whose coefficients are Fourier series. Thus, a Taylor-Fourier series f(z,t) is given

by an expression of the form

+00 o) )
Fla, ) =Y f@)t”  falz) =Y fae®™ (27)
n=0

{=—00
The manipulations required by our methods include sum, products, composition and as well as
algebraic and functional inverses. These operations need to be implemented with care, as we
show in what follows.

Compositions and inverses of Taylor-Fourier series requii‘e consideration of multiplication and
addition, so we discuss the latter two operations first. Additions do not pose difficulties: nat-
urally, they result from addition of coefficients. Multiplications and divisions of Taylor-Fourier
series, on the other hand, could in principle be obtained by means of Fast Fourier Trans-
forms [Press et al., 1992]. Unfortunately such procedures are not appropriate in our context.

Indeed, as we show below, the very rapid decay of the Fourier and Taylor coefficients arising
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in our calcuiations is not well captured through convolutions obtained from FFTs. Since an
accurate representation of this decay is essential in our method — which, based on high or-
der differentiations of Fourier-Taylor series, greatly magnifies high frequency components — an
alternate approach needs to be used.

Before describing our accurate algorithms for manipulation of Taylor-Fourier series we present
an example illustrating the difficulties associated with use of FFTs in this context. We thus

consider the problem of evaluating the subsequent derivatives of the function

2

Sy =1{ > ————Coj,ﬁx)
k=—00

through multiplication and differentiation of Fourier series. For comparison purposes we note

that S actually admits the closed form

acos{z) — 1 )2.
—2acos(z)+1,/) °

S(z) = (1 + 2a2
the value a = 10 is used in the following tests.

In Table 1 below we present the errors resulting in the cvaluation of a sequence of deriva-
tives of the function S at = 0 through two different methods: FFT and direct summation of
the convolution expression. (Here errors were evaluated by comparison ‘with the corresponding
values obtained from direct differentiation of the expression (28) by means of an algebraic ma-
nipulator.) We see that, as mentioned above, use of Fourier series obtained from FFTs lead to
substantial accuracy losses. Indeed, FFTs evaluate the small high-order Fourier coefficients of a
product through sums and differences of “large” function values, and thus, they give rise to large
relative errors in the high-frequency components. These relative errors are then magnified by the

differentiation process, and all accuracy is lost in high order differentiations: note the increasing

loss of accuracy that results from use of larger number of Fourier modes in the FFT procedure.
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The direct convolution, on the other hand, does not suffer from this difficulty. Indeed, direct
convolutions evaluate a particular Fourier coefficient a, of a product of series through sums of
terms of the same order of magnitude as a,. The result is a series whose coefficients are fully
accurate in relative terms, so that subsequent differentiations do not lead to accuracy losses. We
point out that full double precision accuracy can be obtained for derivatives of orders 20 and
higher provided sufficiently many modes are used in the method based on direct convolutions.

In addition to sums and multiplications, our approach requires use of algorithms for compo-
sition and as well as algebraic and functional inverses of Taylor-Fourier series. In view of the
previous considerations, a few comments will suffice to provide a complete prescription. Com-
positions result from iterated products and sums of Fourier series, and thus they do not present
difficulties. As is known from the theory of formal power series [Cartan, 1963], functional in-
verses of a Taylor-Fourier series (27) with fy = 0 results quite directly once the algebraic inverse
of the Fourier series f;(z) # 0 is known. We may thus restrict our discussion to evaluation of
algebraic inverses of Fourier series.

As in the case of the product of Fourier series, two alternatives can be considered for the
evaluation of algebraic inverses. One of them involves point evaluations and FFTs; in view
of our previous comments it is clear such an approach would not lead to accurate numerics.
An alternative approach, akin to use of a direct convolution in evaluation of products, requires
solution of a linear system of equations for the Fourier coefficients of the algebraic inverse. In
view of the decay of the Fourier coeflicients of smooth functions, such linear systems can be
truncated and solved to produce the coefficients of inverses with high accuracy.

In sum, manipulations of Taylor-Fourier series should not use point-value discretizations if

accurate values of functions and their derivatives are to be obtained. The approach described
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in this section calls, instead, for operations performed fully in Fourier space. In practice we
have found the procedures described here produce full double precision accuracies for all oper-

ations between Taylor-Fourier series and their subsequent high-order derivatives in very short

computing times.

6. High-Frequency Integral Equations — TM case

In the transverse magnetic (TM) polarization, the scattered field v = u(z,y) induced by an
incident plane wave impinging on the rough surface y = f(z) is the solution of the Helmholtz
equation with a Neumann boundary condition. The field u(z,y) can be computed [Voronovich,
1994] as an integral involving a surface density v(z, k) and the Green’s function G(z,y,z’,y)

for the Helmholtz equation

400 5
u(z,y) =/ v(z' k) Glz,y, ', f(z)J1+ (f'(2))) dz’ (29)

—00

where v satisfies the boundary integral equation

-V(Ht,k) +/+oo aG(aI,f(CL’),ZL'I,f(CU’)) 1+ (f/(mf))21/(;p’,k)(l;lfl = _d;ér:c (Tf(-'l')) (30)

2 o OM

In what follows we will use the relations

ine _ plaxr—1 __8_@'_ porj VY — __i_ R P
u (m,y) =e€ Py on (.'It,f(.’I)),.L‘ sf(-E )) - 4h(A,T).(](‘L,LL)
r=+(z' — )+ (f(z') — f(x))? h(t) = tH}(t) H{ Hankel function
g(z,z') = f(@) = /() ;2f,($)(l' =) a = ksin(f) B = kcos(h),

where 6 is the incidence angle measured counter-clockwise from the vertical axis, and k& = 27/

is the wavenumber. Since

Juine _ iaf'(z) +1ip taz—if f(x)
(2, f(2)) = — =" """,
on 1+ (f'(x))2
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calling o(z, k) = v(z,k)\/1 + (f'(z))? we can rewrite equation (30) as follows:

A2 [ o, hrg(a,2)ds! = (iaf'(2) + g1 (31)

As in Section 2, a useful form of the integral equation (31) results as we factor out the rapidly

oscillating phase function giar=ibf(z)

(e_(ia"iﬂf(“’))ﬂ(a;,k)) - %/+oo h(kr)g(z,z') (e_(iaz_iﬂf(‘”))ﬁ(x',k)) dz' = 2(iaf'(z) +1iB),
(32)

which cancels the fast oscillations in all non-integrated terms. Using an expansion for the

function (z, k) similar to (6)

+0o0
Dz, k) = elea—ibi(@) ngl }V';Szz)- )
in (32) then yields
+00 1 3 i N I |
> 7;,; (I/n(:v) - EIn(x, k)) = 2k(isin(6) f'(x) + icos(6)) (34)
n=-1

where

+o00 . , R ,
Ia,k) = / h(kr)g(z, o')elo@ ~2)=BUGE=F@g (5)dq'.

—o
The solution of equation (34) requires asymptotic expansions for the integrals I"(z, k). These

expansions are obtained, as in the TE case, by the methods of Section 3. In particular we obtain

the following expressions for the coefficients &, (z):

v_1(z) = 2(isin(8)f'(z) + icos())

Pn(z) = %Zlg‘q_l(w).
q=0 A
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7. Numerical results

Our numerical method proceeds to obtain the integral densities v/(z, k) through equation (6)
in TE polarization and equation (33) in TM polarization, with coefficients v, and 7, obtained
from (9) and (35) respectively, and with Iy given by (25). The Taylor-Fourier expansions
required in equation (12) for the functions gbjrl and g/¢'. are precomputed, as they depend
only on the profile f and they are independent of wave numbers, incidence angles, etc. The
precomputation time was 0.5 seconds for the profile of Figure 1(a) and Figure 1(b) and 0.7
seconds for the profile of Figure 1{(c). (This and all subsequent calculations were performed
in a DEC Alpha workstation (600MHz)). Once the density has been obtained all field related
quantities can be evaluated easily from equation (3) in the TE case and equation (29) in the
TM case.

In this section we present the results produced by our algorithm for the energy radiated in
the various scattering directions. To do this, we use the periodic Green's function G of period

d [Petit et al., 1980]

- 1 +0o eian:c+iﬁ”y I 7
G(z,y) = %d ——ﬁ—’ ap = a+n—d—, Bn = k2 — a2
n

n=-—oQ

to obtain from (3) (TE) or from (29) (TM), the Rayleigh series for the scattered field

(:L‘ ?,I Z B ezanx+16ny

n=—oo

Here, the coefficients B, are “Rayleigh amplitudes”, which are given in TE polarization by

_ , N o in =180 f(T) 4.
B, 2d/ ( + 2 ))V(J:,k)e d:

and in TM polarization by

1 e —ianz—ifnf(z)
B, = Zidﬁn/o (z,k)e dz.
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The required integrals were computed by means of the trapezoidal rule, which for the periodic
functions under consideration is spectrally accurate, and can be computed very efficiently by
means of the FFT.

Our numerical results show values and errors corresponding to the “scattering efficiencies” e,

see [Petit et al., 1980], which are defined by
e = 1B,

and which give the fraction of the energy which is scattered in each one of the (finitely many)
scattering directions. To test the accuracy of our numerical procedures we compare our high-
frequency (HF) results to those of the method of variation boundaries [Bruno and Reitich,
1993} (MVB) in an “overlap” wavelength region — in which both algorithms are very accurate;
additional results, in regimes beyond those that can be resolved by the boundary variation
method are also presented. Note that the HF and MVB methods are substantially different in
nature: one is a high order expansion in 1/k whereas the other is a high order expansion in
the height h of the profile. In the examples that follow we list relative errors for the computed
values of scattered energies in the various scattering directions. The figures given in the columns
denoted by Order 0-19 are the relative errors for the values of the scattered energy calculated
from the high frequency code to orders 0-19 in the corresponding scattering direction. In all
cases errors were evaluated through comparison with a highly accurate reference solution; in
Tables 2 to 8 the reference solution was produced by means of the boundary variations code
mentioned above; in Tables 9 and 10, the reference solution was obtained through a higher-
order application of our high frequency algorithm (Order 15). The first term in the high-
frequency expansion happens to coincide with the classical Kirchhoff approximation. Note that

the Kirchhoff approximation can also be obtained as the zeroth order term of the Neumann
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series for eqﬁation (4). We empbhasize, however, that the high-frequency method used in this
paper is of a completely different nature to that arising from use of Neumann series.

Our first example, presented in Table 2, corresponds to the profile in Figure 1(a) illuminated
by a TE polarized plane wave with h = 0.025, A = 0.025 and an incidence angle § = 30°. The
run time was 10 seconds for the calculation of order 17; we see that, as claimed, the present
approach produces results with full double precision accuracy in short computing times.

The results for the profile in Figure 1(a) under TM polarization are given in Table 3. Here
we take h = 0.025, A = 0.0251, with an incidence angle § = 30°. Our choice of wavelength
in the present TM case, which is slightly different from the value A = 0.025 we used in the
TE case, was made to avoid the Wood anomaly [Hutley, 1982] that occurs at the latter value,
for which the test boundary variation code fails. Our high-frequency method however does not
suffer from that drawback and results for the profile in Figure 1(a) with 4 = 0.025, A = 0.025
and an incidence angle 8 = 30° are given in Table 4. The refercnce solution in this case is the
high-order high-frequency solution of order 21. The convergence of our expansion in this case is
similar to the convergence observed to the previous case where A/d = 0.0251. Again, full double
precision accuracies are reached in a 10 second calculation.

Our method is not restricted to sinusoidal surfaces, of course. In Table 5. for instance we
present results corresponding to the profile of Figure 1(b) with A = 0.01. A = 0.025 and 8 = 0°
in TE polarization. The run time was 5 seconds for the order 11 calculation. Table 6 shows
results for the same profile under TM polarization with h = 0.01, A = 0.0251 and 6 = 0°. The
run time was 4 seconds for the order 11 calculation.

We next consider the third order “Stokes” wave [Kinsman, 1965] shown in Figure 1(c). The

results presented in Table 7 assumed the parameter values A = 0.02, A = 0.04 and 8 = 0° and TE
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polarization. The run time in this case was 27 seconds for the calculation of order 19. Table 8
shows the results for TM polarization and A = 0.02, A = 0.041 and § = 0°. The run time was
23 seconds for the order 19 calculation.

Table 9, presents results for a low grazing angle example for the profile of Figure 1(a) with
h = 0.025, A = 0.001 and 6 = 70° (20° grazing) in TE polarization. As mentioned above. for
reference in this case we used the high-frequency solution of order 15. The run time for the order
9 calculation was 12 seconds. The results for the profile of Figure 1(a) under TM polarization
with A = 0.025, A = 0.0011 and 8 = 70° are given in Table 10. The run time was 19 seconds for
the order 9 calculation.

A final remark concerning the order of the Fourier series used in the examples above is now
in order. For the examples given in Tables 2-8 no more than 30 Fourier modes were used.
The number of Fourier modes needed depends on the incidence angle, height of the profile, the
order of the high-frequency expansion used and the accuracy required; in the cases considered
in Tables 9 and 10, for example, it was necessary to use 45 Fourier coefficients to achieve the

accuracies reported.

8. Conclusions

We have shown that high order summations of expansions of the type (1) can be used to
produce highly accurate results for problems of scattering by rough surfaces in the high-frequency
regime in TE and TM polarizations. Our algorithm is based on analytic continuation of divergent
integrals and careful algebraic manipulation of Taylor-Foufier series representations. Our results
show accuracies which improve substantially over those given by classical methods such as the

Kirchhoff approximation. As shown recently [Sei et al., 1999], such accuracies are needed to
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capture important aspects of rough surface scattering involving very low scattering returns and
occurrences of unusual polarization ratios. Further, the results of [Bruno and Reitich, 1993]
clearly suggest that a multiscale perturbation algorithm of the type proposed in [Bruno et al.,
2000] should yield the required accuracies for multiscale surfaces provided an accurate high-
frequency solver, such as the one presented in this paper, is used. This paper thus extends the
range of applicability of classical asymptotic methods producing a versatile. highly accurate and

efficient high-frequency numerical solver.
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Figure 1. Various profiles considered in the text:
h

(a) f(z) = —2~cos(2m:)
f

(b) f(z) = %(cos(27m:) + cos(4mz))

(c) flz) = §(~ cos(2rz) + 0.35 cos(4dnz) — 0.035 cos(6mz))




Table 1. Values of the derivatives of the function S(z) at = = 0 for various orders
of differentiation. The columns marked 20 Modes, 30 Modes and 40 Modes list the
relative errors of the derivatives computed by summing differentiated Fourier series
truncated at 20, 30 and 40 Modes, respectively. Columns FFT and Conv. resulted
from use of Fourier coefficients obtained through FFTs and direct convolution, re-

spectively.

Order Exact value at 0 20 Modes 30 Modes 40 Modes

FFT Conv. FFT Conv. FFT Conv.

2 -7.376924249352232¢-01 | 1.3e-12 | 5.4e-16 | 1.7e-11 | 2.7e-16 | 1.0e-11 | 2.7e-16

4 2.377008924791275e+00 | 6.8e-11 | 3.0e-14 | 4.2e-09 | 2.9e-15 | 9.8e-10 | 2.9e-15

6 -1.702966504696142e+01 | 5.5e-10 | 1.8e-12 | 4.6e-07 | 0.0e-00 | 1.7e-07 | 0.0e-00

8 2.184589621949499e+02 | 2.7e-08 | 5.8e-11 | 2.9e-05 | 2.3e-15 | 4.1e-05 | 2.3e-15

10 -4.361708943655447e+03 | 8.8¢-07 | 1.2e-09 | 1.1e-03 | 6.9e-16 | 3.8e-03 | 6.9e-16

12 1.248619506829422e+05 | 1.4e-05 | 1.7e-08 | 3.1e-02 | 0.0e-00 | 2.2e-01 | 8.0e-16

14 -4.844671808314213e+06 | 1.4e-04 | 1.8e-07 | 6.5e-01 | 6.0e-15 | 8.7e+00 | 1.0e-15

16 2.445839768254340e+08 | 1.1e-03 | 1.5e-06 | 1.0e401 | 1.3e-13 | 2.7e+02 | 1.6e-15

18 -1.557531553377787e+10 | 6.5e-03 | 9.4e-06 | 1.3e4+02 | 1.9e-12 | 6.6e+03 | 0.0e-00

20 1.220898732494702e+12 | 3.1e-02 | 5.0e-05 | 1.4e+03 | 2.2e-11 | 1.3e+05 | 8.2e-16

26




Table 2. Results for the profile of Figure 1(a) in TE polarization with A = 0.025,
A = 0.025 and incidence angle § = 30°. The run time was 10 seconds for the

calculation of order 17.

Efficiency Scattered
# Energy Order 0 | Order 1 | Order 5 | Order 11 | Order 17
0 7.538669511479800e-04 || 3.8¢-02 | 6.3e-05 | 1.1e-08 | 5.0e-12 2.4e-13
1 1.194293110668300e-01 2.0e-04 | 3.1e-06 | 4.9e-09 2.8e-13 2.2e-14
2 4.713900020760300e-03 1.5e-02 1.7e-05 | 2.7e-08 6.5e-13 3.3e-14
3 9.472951023686101e-02 2.4e-03 5.8e-05 1.7e-09 1.2e-13 4.0e-15
4 1.606247510782500e-01 1.2e-04 | 8.9e-05 | 2.8e-10 7.3e-14 8.6e-15
5 8.121747375826800e-02 || 1.5e-03 | 1.3e-04 | 2.3e-08 | 3.5e-14 7.9e-15
6 2.068175899532900e-02 2.7e-03 1.9e-04 1.2e-08 3.1e-13 4.4e-15
7 3.171379802403400e-03 3.9e-03 2.5e-04 3.5e-08 1.5e-13 5.3e-15




Table 3. Results for the profile of Figure 1(a) in TM polarization with 2 = 0.025,
A = 0.0251 and incidence angle § = 30°. The run time was 10 seconds for the

calculation of order 17.

Efficiency Scattered
# Energy Order 0 | Order 1 | Order 5 | Order 11 | Order 17
0 1.148002904781718e-03 || 3.1e-02 | 3.4e-05 | 2.6e-09 | 7.2e-13 4.0e-13
1 1.196487185464779e-01 1.5e-04 1.1e-05 2.2e-11 1.8e-14 3.3e-14
2 3.930863630633380e-03 1.6e-02 2.9e-05 | 2.8e-10 1.5e-13 1.1e-13
3 9.729981709870275e-02 2.4e-03 2.3e-05 2.6e-10 4.3e-14 3.7Te-14
4 1.603959300090739e-01 1.4¢-04 | 4.0e-05 | 3.6e-10 1.9e-14 2.4e-14
) 7.991729015156721e-02 1.5e-03 6.5e-05 | 2.8e-10 1.3e-14 6.9e-15
6 2.011674295356339%¢-02 2.7e-04 | 9.8¢-05 | 3.4e-10 4.0e-14 1.3e-14
7 3.052813099869383e-03 3.9e-03 1.4e-04 2.5e-09 4.4e-14 9.6e-14




Table 4. Results for the profile of Figure 1(a) in TM polarization with A = 0.025,
A = 0.025 and incidence angle # = 30°. The run time was 10 seconds for the

calculation of order 17.

Efficiency Scattered
# Energy Order 0 | Order 1 | Order 5 | Order 11 | Order 17
0 6.978718873398379e-004 || 4.0e-02 | 4.8e-05 | 3.2e-09 | 4.0e-13 1.6e-15
1 1.193803726254851e-001 || 2.1e-04 | 1.1e-05 1.9e-11 1.3e-14 9.3e-16
2 4.854671479355886¢-003 || 1.5e-02 | 2.5e-05 | 2.6e-10 3.9e-14 5.4e-16
3 9.427330239288337e-002 || 2.4e-03 | 2.3e-05 | 2.5e-10 6.8e-15 2.9e-16
4 1.606619051666006e-001 || 1.1e-04 | 3.9e-05 3.5e-iO 4.3e-15 5.2e-16
5 8.146471443830940e-002 || 1.5e-03 | 6.4e-05 | 2.8e-10 | 4.3e-15 0.0e-16
6 2.079411505463193e-002 || 2.7e-04 | 9.6e-05 | 3.1e-10 | 2.2e-14 1.0e-15
7 3.195973191313253e-003 || 3.9e-03 | 1.4e-04 | 2.3e-09 1.4e-13 1.9e-15




Table 5. Results for the profile of Figure 1(b) in TE polarization with h = 0.01,
A =0.025 and 8 = 0°. The run time was 5 seconds for the order 11 calculation.

Efficiency Scattered
# Energy Order 0 | Order 1 | Order 5 | Order 9 | Order 11
0 1.983702874853860e-01 1.4e-03 6.7e-06 | 6.3e-10 1.8e-13 9.8e-16
1 2.125625186015414e-02 || 4.3e-03 | 7.3e-06 | 8.6e-10 | 4.6e-14 1.5e-14
2 5.109656298137152e-02 4.2e-03 5.3e-06 1.3e-09 | 3.5e-14 1.1e-14
3 1.350594564861170e-01 1.1e-03 3.0e-06 1.8e-10 | 5.1e-14 6.6e-15
4 1.670755436364386e-02 4.3e-03 | 928e-06 | 1.5e-09 1.8e-13 2.7e-15
5 1.041839113172000e-01 8.7e-04 1.1e-05 4.7e-10 3.8e-14 2.9e-15
6 3.029977474761340e-02 7.6e-04 1.1e-05 4.8e-10 1.0e-15 9.0e-15
7 2.828409217693459%e-02 2.5e-03 3.2e-05 1.8e-09 | 3.5e-14 9.4e-15




Table 6. Results for the profile of Figure 1(b) in TM polarization with A = 0.01,
X = 0.025 and @ = 0°. The run time was 4 seconds for the order 11 calculation.

Efficiency Scattered
# Energy Order 0 | Order 1 | Order 5 | Order 9 | Order 11
0 1.985778821348800e-01 || 1.3e-03 | 1.1e-05 | 5.6e-11 | 9.1e-15 | 5.0e-15
1 2.203189065423864e-02 || 4.3e-03 | 6.1e-06 | 8.5e-12 | 2.0e-14 | 2.2e-14
2 4.989624245086630e-02 4.2¢-03 1.2e-05 1.3e-10 | 6.8e-15 8.3e-15
3 1.363942224141270e-01 1.1e-03 | 3.0e-06 6.6e-li 1.1e-14 6.7e-15
4 1.685456723960805e-02 4.3e-03 1.7e-05 1.5e-10 | 2.7e-14 1.5e-14
5 1.040033802018770e-01 8.9e-04 9.9e-07 | 8.4e-11 2.96--15 2.0e-15
6 2.994981016528542e-02 7.8e-04 1.5e-06 1.9e-10 1.4e-15 1.0e-14
7 2.795532080716518e-02 2.5e-03 1.5e-05 1.2e-11 | 3.2e-15 1.1e-15




Table 7. Results for the profile of Figure 1(c) in TE polarization with h = 0.02,
A = 0.04 and 6 = 0°. The run time was 27 seconds for the calculation of order

19.
Efficiency Scattered
# Energy Order 0 | Order 1 | Order 5 | Order 11 | Order 19
0 2.762105662320035e-01 1.9e-3 1.6e-5 7.4e-9 6.5e-14 2.4e-15
1 5.735818584364873e-02 3.1e-3 2.0e-5 1.9e-8 1.3e-12 6.0e-16
2 9.154897389472935e-02 3.7e-3 5.1e-6 8.2e-9 1.4e-12 6.7e-15
3 1.051875097051952e-01 4.6e-4 5.1e-6 1.6e-9 1.0e-12 9.2¢-16
4 6.713521833646909e-02 1.7e-3 2.7e-5 1.4e-11 3.6e-12 2.1e-16
5 2.830374622545111e-02 3.9e-3 7.3e-5 1.4e-8 2.2e-13 6.7e-15
6 9.270117932865375e-03 5.9e-3 1.3e-4 3.2e-8 1.1e-11 3.0e-15
7 2.435385416440963e-03 7.9e-3 2.2e-4 8.4e-8 4.1e-12 1.8e-16
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Table 8. Results for the profile of Figure 1(c) in TM polarization with A = 0.02,
A = 0.041 and 8 = 0°. The run time was 23 seconds for the calculation of order

19.
Efficiency Scattered
# Energy Order 0 | Order 1 | Order 5 | Order 11 | Order 19
0 1.291589358261453e-01 || 2.2e-03 | 1.6e-05 | 2.7e-10 2.1e-12 9.5e-14
1 1.662663939465338e-01 || 1.7e-03 | 5.1e-05 | 2.8e-10 1.6e-12 4.1e-14
2 3.920583564991646e-03 || 8.5e-03 | 5.3e-06 | 7.0e-09 1.3e-11 6.2e-13
3 1.878743087516774e-02 || 1.5e-02 | 2.7e-06 | 2.6e-09 6.9e-12 1.5e-13
4 7.416580102755271e-02 || 3.7¢-03 | 2.8¢-05 | 4.6e-09 6.7e-12 9.4e-15
5 7.840714643630796e-02 || 2.4e-04 | 2.0e-05 | 6.5e-09 6.6e-13 2.4e-14
6 5.345392880491968e-02 || 2.6e-03 | 1.6e-05 | 6.5e-09 9.6e-12 4.9e-14
7 2.611186407051911e-02 || 5.1e-03 | 6.8e-05 | 4.3e-09 8.6e-13 5.1e-14
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Table 9. Results for the profile of Figure 1(a) in TE polarization with h =
0.025, A = 0.001 and # = 70°. The run time was 12 seconds for the order 9

calculation.

Efficiency Scattered
# Energy Order 0 | Order 1 | Order 3 | Order 7 | Order 9
0 9.405896918172547e-03 || 9.1e-06 | 2.3e-07 | 1.2e-10 | 1.7e-14 | 6.le-16
1 4.691450406852652e-03 || 1.2e-05 | 1.1e-07 | 8.4e-11 | 2.3e-16 | 2.2e-16
2 4.977619850889408¢-03 || 1.2e-05 | 1.3e-07 | 7.3e-11 | 7.5e-15 | 9.1le-17
3 8.970028199252082¢-03 || 1.1e-05 | 2.1e-07 | 1.8e-10 | 5.5e-15 | 3.6e-16
4 1.591650541515982¢e-03 || 8.4e-06 | 4.2e-08 | 2.5e-11 | 5.2e-17 | 3.9e-16
5 1.151449525094811e-02 || 6.0e-06 | 2.7e-07 | 2.7e-10 | 3.8e-15 | 5.7e-17
6 1.509705192413105e-04 || 2.8¢-06 | 4.9e-09 | 8.3e-13 | 1.2e-15 | 2.0e-16
7 1.232860573339191e-02 6.3e-07 2.9e-07 | 3.5e-10 4.2¢-15 7.6e-16
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Table 10. Results for the profile of Figure 1(a) in TM polarization with
h = 0.025, A = 0.0011 and # = 70°. The run time was 19 seconds for the order

9 calculation.

Efficiency Scattered
# Energy Order 0 | Order 1 | Order 3 | Order 7 | Order 9
0 4.663322085313096e-03 || 2.9e-03 | 1.8e-05 | 1.4e-08 | 8.5e-14 | 9.9e-15
1 5.732453099268077e-03 || 2.4e-03 | 2.0e-05 | 1.5e-08 | 1.2e-14 | 1.0e-14
2 9.742422239435774e-03 || 1.4e-03 | 1.9e-05 | 1.5e-08 | 5.0e-14 | 2.7e-15
3 1.692802029774497e-03 || 5.8e-03 | 2.2e-05 1.7e-Oé 5.1e-16 | 2.9e-15
4 1.271613899298100e-02 5.4e-04 1.9e-05 | 1.7e-08 | 4.9e-14 | 2.5e-15
5 9.550848574956618e-05 2.7¢-02 | 3.1e-05 | 2.7e-08 | 1.7e-13 | 8.7e-15
6 1.351161517190391e-02 2.2e-05 | 2.0e-05 | 1.9e-08 | 6.8e-14 | 5.3e-15
7 1.898341280339258e-04 || 2.0e-02 1.1e-05 | 9.9e-09 | 2.9e-13 | 7.6e-14
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Abstract. In the present paper a detailed analysis of the behaviour of the elec-
tromagnetic scattering from various corrugated bi-dimensional surfaces is pre-
sented. We show that rigorous electromagnetic computations on two dimensional
surfaces can in fact yield HH/VV polarization ratios greater than one, with val-
ues consistent with those observed experimentally. Furthermore we show that
HH/VV ratios greater than one are ubiquitous in the case of surfaces of the form
f(z,y) = fi(z) + fa(y), known as crossed grating in optics. As demonstrated
theoretically and numerically below these surfaces produce backscattered returns
for which the first order Rice/Valenzuela term vanishes for off axis incidence.
Further, the second order term becomes dominant and has the property that
HH returns exceed VV returns for a significant range of incident angles. Our
approach is based on the methods of [Bruno and Reitich, 1993] which yield ac-
curate results for a large range of values of the surface height. In particular,
these methods can be used well beyond the domain of applicability of the first
order theory of [Rice, 1951]. The error in our calculations is guaranteed to be
several orders of magnitude smaller than the computed values. The high order
expansions provided by these methods are essential to determine the role played
by the second order terms as they show that these terms indeed dominate most
of the backscattering returns for the surfaces mentioned above. Classically, large
HH/VV ratios were sought by means of first order approximations on one dimen-
sional sinusoidal profiles. As we show below, in that case the first order terms do
not vanish and the first order theories predict the behaviour of the backscattered
returns, for small values of the height to period ratio. However, in the case of
a two dimensional bisinusoidal surface, strong polarization dependent anomalies
appear in the scattering returns as a result of the contributions of second order
terms since, in that case, the first order contributions vanish.

1 Introduction

Recently, in the framework of remote sensing, experimental data [Trizna et al., 1991,
Lee et al., 1997] has drawn attention to a peculiar feature of polarization effects of
oceanic scattering. It was observed that radar cross sections for HH polarization
(transmit H and receive H) can exceed radar cross sections for VV polarization
(transmit V and receive V) in so called super-events. In the present paper we
show that rigorous electromagnetic computations on two dimensional surfaces can
yield HH/VV ratios greater than one, with values consistent with those observed
experimentally. Furthermore we show that HH/VV ratios greater than one are
ubiquitous in the case of surfaces of the form f(z,y) = fi(z) + fo(y), (known
as crossed grating in optics). As demonstrated below these surfaces produce




backscattered returns for which the first order (Rice/Valenzuela) term vanishes
for off axis incidence. Further. the second order term becomes domninant and
has the property that HH returns exceed VV returns for a significant range of
incident angles.

2 Perturbation expansions

We consider a time harmonic incident plane wave impinging on the doubly peri-
odic surface z = f(z,y), with x-axis period d, and y-axis period d,. We have:
flz+de.y +dy) = f(z,y). The incident electric field with wave vector k is :

Eint = A exp [i(ax + By — vz)] 1)

where the vector A = (A', A%, A%) specifies the state of polarization of the inci-
dent wave and k is determine from the incident angles ¥ and # as follows:

v a = k cos(t) sin(8)
k=] 3= ksin(+)sin(f) (2)
—y = —k cos(#)

The angle @ is the angle between the vector k and the z-axis and the angle + is the
angle between the projection of the vector k and the x-axis and k = [k| = 27/
where A is wavelength of the incident radiation. The time harmonic Maxwell's
equations for the scattered electric field E reduce to the following equations in
the case of a perfect conductor:

AE(z,y,2) + k*E(z.y,z) =0 V -E(x.y.2z) =0
_ 3)
nx E(z.y. f(z,y)) = —n x E"z.y. f(x.y))
where n is the normal to the surface z = f(z.y). To derive a perturbation series
for the solution of this scattering problem we introduce the surface fs(x.y) =
df(x,y) where § is a complex number, see [Bruno and Reitich. 1993]. The scat-
tered field E(c, y, z; ) associated to the surface fs(.y) can be written and com-
puted as a Taylor series expansion in powers of 4. as follows:
N . ) a2

E(r,y.z:0) = E(z.y,7z0) +Es{z.y. 2:0)0 + Egg5(. y, 2:0) 0 + ... (4)
Solving the scattering problem for the surface z = f(x.y) then amonnts to eval-
uating the series (4) at § = 1.

As is known, see [Petit, 1980]. the field scattered from a bi-periodic surface
can be represented outside the groove region (that is for » > wax f(z.y)) as a
sum of outgoing plane waves with certain amplitudes B, , as tollows E(r,y. 2) =
Z Byy ¢l B0y =T0a? where
Py

e =a+ K, B =B+ 7”](1/ Yean =
and where the surface z = f(z,y) is given by its Fourier series:
27 27

P
oy . K w—tm Ky [, =
flag)= 3 fem et K= =g

Em=—F




The outgoing (p, q) plane wave e*®»*+#.¥+a% will contribute backscatering re-
turns if the following 3D Bragg conditions are satisfied:

y = — By = -p Tp.g = (6)

From the definitions (2) and (5), the conditions (6) are equivalent to the following:

A 2sin(0) g dy
2= 2 tanp) = 1 = 7
& . dy D gy
p? + (d_) g

For a given incidence (#,), for which p and g satisfy (7), it can be shown that
the first order backscattered field is given by:
2i(yA' + 2a43)
A2 3 : y
2i(yA° + ZﬂA?’) fp,q eiopt+iBey+rpqz

Ed(itqyﬁzﬁ;o) = A
ol 400 4 4 )

3 Numerical Results - Perfectly conducting surfaces

We consider the simplest two dimensional surface namely a bisinusoid surface
with periods d, = dy, = 1 and height h defined by:

flzy) = g (cos(27z) + cos(2my)) (9)

The fact that the surface f(z,y) is of the form f(z,y) = fi(z) + foly) implies
that the Fourier coefficients fi,, of f(z,y) are such that f,, = 0 for p-¢q # 0.
In this case, formula (8) shows that unless p = 0 or ¢ = 0, that is unless ¢y =0

or ¢ = > the first order backscattered field vanishes. When the incident field is
. . ™ .

aligned with the x or y axis, that is when ¢y =0 or ¢ = > then the ratio of HH

to VV backscattered returns turns out to be:

oyn(0,0)  oun(f,m/2) ( (208(9)2)2)2 (10)

Uy‘\'(e,()) N 0’1/\/(9,7‘(‘/2) - 1+sin(6

which is the classical first order result found in [Valenzuela, 1978] for a perfect
conductor (take the limit ¢ — +o00 in formulas 4.10 and 4.11 on page 211). When
P #0ory # g, that is for p - ¢ # 0, the first order term vanishes (since f, 4 =
0 for p-g# 0) and the second order term becomes dominant. This is illustrated
in Figure 1 where the second order calculation is compared to a high order (21)
converged reference solution (see [Bruno and Reitich, 1993, Sei et al., 1999] for
details on the accuracy of the numerical algorithm used). Most interestingly, the
second order term has the striking feature that HH returns exceed VV returns for
a large range of incidence angles as illustrated in Figure 2, in sharp contrast to the
first order returns. As expected from formula (8) the fact that the second order
term is dominant is not a special feature of the bisinusoid surface (9); similar
results were obtained for arbitrary surfaces of the form f(z,y) = fi(z) + fo(y).
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Figure 1: Comparison of the second order calculation to the exact high order
calculation for the surface (9) with A = 0.03, ¢ = 45° and 30° < # < 89°. (a) HH
polarization. (b) VV Polarization.
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Figure 2: HH and VV backscattered returns for the surface (9) with & = 0.03.

1) = 45° and 30° < 6 < 89° (a). Corresponding HH to VV ratios (b).
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1 Introduction

The electromagnetic scattering from the surface of
the ocean plays an important role in a wide range of
applications, including SAR imaging, remote sensing,
detection, etc. The analysis of the scattering pro-
cesses involved in these applications poses a rather
challenging scientific problem as it requires descrip-
tion and understanding of diffraction by complicated
surfaces {1]. Computationally, the main difficulty
arises from the multiple-scale nature of the scatter-
ing surfaces, whose spectrum spans a wide range of
lengthscales. A number of techniques have been de-
veloped to treat associated limiting cases. For exam-
ple, the high frequency case, in which the wavelength
A of the incident radiation is much smaller than the
surface lengthscales, can be handled by asymptotic
methods such as geometrical optics or physical op-
tics approximations. On the other hand, resonant
problems where the incident radiation is of the order
of the surface scale are treated by perturbation meth-
ods, typically first or second order expansions in the
height A of the surface (cf. (2, 3,35)).

However, when a multitude of scales is present on
the surface none of the techniques above is adequate,
and attempts to combine them in a so-called two-
scale approaches (2,4, 5] have been given. The two-
scale models imply a splitting of the surface into a
large and small scale, see e.g. [5,6], where typically

a first order approximation in wavelength (Kirch-
hoff approximation) is used to treat smooth compo-
nents of a surface and a first order in surface height
(Rayleigh-Rice method [35]) is used to deal with the
rough components of the surface. The results pro-
vided by these methods are not always satisfactory
— precisely as a result of the limitations imposed by
the low orders of approximation used in both, the
high-frequency approximation and the small pertur-
bation methods. (See e.g. [5] where the loss of accu-
racy of the two-scale model at low grazing angles is
demonstrated.)

To alleviate these drawbacks, our approach to
multi-scale scattering is based on use of expansions of
very high order in both parameters A and h — which
leads to algorithms based on complex variable theory
and analytic continuation. The resulting approach
expands substantially on the range of applicability
over low order methods, and can be used in some of
the most challenging cases arising in practice. Fur-
thermore, as demonstrated below, this new method
does not require separation of the length-scales in the
surface into large and small, but instead it is able to
deal with a continuum of scales on the surface. In-
deed the high order expansions presented below have
a common “overlap” region in the (\,h) plane where
both components are highly accurate. More precisely,
there is a range of surface heights and incident wave-
lengths for which both methods produce results with
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13-2 RTO-MP-60
AC/323(SET)TP/12

machine accuracy. Therefore by dividing the scales
of a surface at a point in the overlap region we ob-
tain a general method which is applicable to surfaces
containing a continuum of length-scales — which is
ideal for evaluation of scattering from surfaces with
spectral distributions of oceanic type.

High accuracy as is exhibited by our algorithms is
essential in a wide range of important oceanic appli-
cations — whose return losses are typically in the -60
dB to -100 dB range. In particular, in order to pro-
vide credible results numerical methods must be able
to insure accuracies of the order of up to 10 digits in
some cases; see (37] for a case in point.

In the present paper we provide a description of our
general approach, and we focus on the two basic ele-
ments of the general method, namely the high-order
perturbation expansion in the wavelength A and the
high-order perturbation in height h. For simplicity
we restrict our theoretical discussion to problems of
scattering from a perfectly conducting rough surface
of a transverse electric polarized wave (HH Polariza-
tion); numerical results will be given for both trans-
verse electric and transverse magnetic polarizations,
for three-dimensional problems, and for low to very
low grazing angles. In particular we present results
for a surface obtained from a Longuet-Higgins hy-
drodynamic code, for which our solver produced full
double precision accuracy for grazing angles as low
as 1°.

2 Multi-scale solver

Our multi-scale solver is based on the method of
variation of boundaries [14-17]. We consider sur-
faces containing a continuum of scales but, as men-
tioned above, the existence of an overlap allows us
to solve the complete multiple-scale problem by ex-
pressing an arbitrary surface y = S(z) as a sum
y = So(z) + F(z) where So(z) contains wave num-
bers < Ng, and F(z) contain the complementary set
of wave numbers > Ng. Thus, our method uses a
dichotomy in wave numbers but it does not assume a
separation of scales. This feature is essential in the
study of oceanic waves since many studies show that
the wave spectrum spans a large range of wavenum-
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ber (see for instance [33]).

As mentioned above, we restrict our presentation
to the particular case of an HH configuration in two
dimensions; the scattered field created by an incident
plane wave impinging on the rough surface thus solves
the Helmholtz equation with a Dirichlet boundary
condition. Qur approach to the solution of the gen-
eral problem with rough surface y = S(z) proceeds
as follows:

1. We consider the surface S(z,d) = So(z) +6F(z),
which will be used as a basis for a perturbative
method in the parameter §.

2. The solution u = u{z, §) associated with the sur-
face S(z,d) is obtained by perturbation theory
around ¢ = 0.

3. The solution for the surface S(z) is then recov-
ered by setting § = 1. (As explained in Sec-
tion 4 below, this evaluation usually leads to di-
vergent series whose re-sumation requires appro-
priate methods of analytic continuation.)

In detail, writing

+00 5™
u(z,2;0) = Z um(z, z)—m—!
&) m=0
o™u
Uy = W(x,z;& = O)
the fact that, for every fixed value of § the field
u(z, z;8) solves the Helmholtz equation

Au(z, z;8) + k*u(z, 2;8) = 0

2) _
U(IL', S(x7 6)v 5) = "u"w(zv S(I, 5))

then tells us that, for every fixed value of m we have
Aup(z,2) + Kup(z,2) =0

Um(z, So(z)) =G [Fy uinc’ e 7um—l} (x, So(z))
3)
The interest in this equation arises from the fact that,
although the right hand side in the boundary condi-
tion for u,, is highly oscillatory, the surface Sy itself




is not. We therefore have reduced a problem on a
highly oscillatory surface to a sequence of problems
on a non-oscillatory surface. For example the zeroth
and first order coefficient in the expansion of u(z, z; d)
solve the following scattering problems:

{ Aug(z,z) + k2up(z,2) =0
(4)
ug(, So(2)) = ~u'"*(z, So(z))-

and
Auy(z,2) + Kuy(z,2) =0

us (2, Sol2)) = Fz) ("’“i"° +29) (5, 5(0).

Oz
(5)
The general boundary condition of (3) can be com-
puted up to any order by differentiation with respect
to & of the boundary condition of (2), as in equa-
tion (5), and the general solution to arbitrary order
can be found.

3 Variation of boundaries -
previous work

In the particular case where the surface y = Sp(z) is
a plane, which allows for exact solution of each of the
scattering problems (3), this perturbation method
has been studied in detail [15-17]. Earlier uses of per-
turbation theory in these contexts had been limited
to low-order methods; the new high order perturba-
tion theory on the other hand, relies on expansions of
very high order in powers of a deviation parameter,
denoted here by 4, and techniques of analytic con-
tinuation in the complex é-plane. Specifically, Taylor
series for the field quantities are obtained through
differentiation of the Maxwell system with respect to
. The possible (and common) divergence of the re-
sulting series is handled through re-summation tech-
niques that exploit the analytic structure of the so-
lution.

The resulting algorithms can resolve scattering re-
turns with accuracies that are several orders of mag-
nitude better than those given by classical meth-
ods [15-17]. Such accuracies can play an important
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role in applications. For instance the fine resolution
provided by our algorithms has recently helped set-
tle a long-standing controversy relating to polarized
back-scattering returns from rough surfaces —which
amount to very small fractions of the incident en-
ergy [37].

As shown in the various papers cited in this sec-
tion, this solver is extremely accurate for a wide range
of surface heights and incidence angles. Thus, the
accuracy of the multi-scale method proposed in the
previous section is determined by the corresponding
accuracy of the high-frequency solutions for equa-
tion (3). Such an accurate solver for high-frequency
problems, in turn, is provided in the following sec-
tion. The performance of both the boundary varia-
tion and high-frequency methods is studied numeri-
cally in Section 5.

4 High-order-high-frequency
method

The scattered field can be computed from the surface
current density v induced on the surface f(z) by the
incident plane wave [2]. The function v solves the
integral equation

; ptoo . .
V(x’ k)—’;' h(kMMl)g(x, IL")I/(:EI, k)dl" — _elclz-:ﬁf(;:)
-0

(6)
where
MM = @@ -z2+ (&) - f2))?
h(t) = tH}(t) H} Hankel function
9(z,z') = (f(&') = f(z) = (&' - 2)f'(z"))/MM"
a = ksin() B = kcos(f).

To solve this equation we use an asymptotic expan-
sion of high order around k¥ = co. Our asymptotic
expansion results from the geometrical optics type
ansatz

+00
= piaz—iff(z) ”n(z)
M ek = 5 =y

n=0
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From equations (6) and (7) we obtain
+o0o 1

(8) n( )——I"(r k)] = -2
S e )

where

I"(z,k) = /+iz?kMM’)g(m, g )e= W@y, (') dz'
¥(z,2) = sin(8)(z' - z) — cos(8) (f(=') — £(2))

To obtain the coefficients vy, (z) we must produce the
asymptotic expansion of I"(z,k) in powers of 1/k.
To do this we use two separate integration regions
and we define

z o I
I"(z,k) = [ h(kMM")g(z,z')e~*¥@3Vy, (' )dz'

—00

It(z,k) = | h(kMM')g(z, z')e~*¥ea)y (2)dr'

T

We focus first on an asymptotic expansion for
I (z,k). Using t = 2’ — z we can write

+00

Iz k) = [ h(ke+(z,1)g(z, z+t)e™*YEDu, (z+8)dt
0

9)

where ¢, (z,t) VE + (f(z +1) - f(z))?
Y(z,t) = sin(8)t — cos(8)(f(z + t) — f(z)) For the
simplest treatment we present here we assume that
f(z) satisfies the condition

a¢+ (27, t)

¢l (z,t) = 3 >0 for t>0

so that the map ¢ — ¢4 (z,t) is invertible; this condi-
tion is generally satisfied by rough surfaces relevant
to the applications under consideration. Then setting

u=¢4(z,t) &= t = ¢7'(z,u)

we can rewrite equation (9) in the form

+00
Iz, k) = / h(ku)FF (z, u)e=*%* @) gy,
0

NATO UNCLASSIFIED

with
9(z, = + 67 (z,u)) -
By = e o @)
pH(zu) = (flz+ o7 (z,u)) - f(z)) cos(6)
- ¢;1 (z,u)sin(6)
(10)

We can now use the Taylor series of u = F}(z,u)
around u =0

% omFt(z,0)

Rrew=) Tl zp,,mmu
T 6”‘F+(a: 0)

+ - —__n\mE

Pim(@) = ———p

to express I} (z, k) in the form

It (z,k) = anm:v)/

m=0

h(ku)e —iky (2,u) gy,

+co
jy ()
= Z ;:—f-l A+(k m, 2:)
m=0
(11)

where we have set
+o0 T
(12) A*(k,m,z) = / o™ h(v)e=HY @) dy
0

(These non-convergent integrals must be re-
interpreted by means of analytic continuation —
in a manner similar to that use in the definition
and manipulation of Mellin transforms. We do not
provide details about this analytic continuation
procedure here; see [7] for a complete treatment in
the case of the Mellin transform.)

To complete our expansion of I7{z,k) we need to
produce a corresponding expansion of the quantity
A*(k,m,z) in powers of 1/k. With ¢ = 1/k we call

- +oo .
A+(5, m,z) = A‘*‘(k’ m, ) =/ Umh(v)e—uzz*’(:,ev)/sdv

0
(13)
By evaluation of the successive derivatives of
A*(e,m,z) with respect to € at € = 0 it is easy
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to check that the coefficients of the Taylor series of
A* (e, m, z) with respect to € can be obtained directly
if all the integrals in the sequence

At(m,z) = /

0

-+00

avt
v™h(v) =% (=0 gy,

are known; for example, the first derivative is given

by (with ¢} (z) = r

Wt
oun
BA* (e, m,z)

Oe

e=0

Using equations (11) and (13) the expansion for
I%(z, k) results; clearly, the expansion of I” (z, k) can
be obtained through a similar derivation. The com-
bined expansion for I"(z, k) involves combinations of
quantities such as pf . (z), ¥/ (2): Prm(@)s ¥z (2),
A+(m,z), A= (m,z). It can be shown that all of these
quantities — and therefore the integrals A%x(m,z) for
all m— can be obtained from the integrals

+00
/ v™t H} (v) cos(av)dv  if m even
0

o<
v™*1 H1(v) sin(av)dv

r

for which closed form formulas are available [8].

if m odd

5 Numerical results

To test the accuracy of our numerical procedures
we compare our results for the high-frequency and
boundary variation methods in an “overlap” wave-
length region — in which, as we show, both algo-
rithms are very accurate. Note that these two meth-
ods are substantially different in nature: one is a high
order expansion in A whereas the otherisa high order
expansion in the height h of the profile. In the ex-
amples that follow we list relative errors for the com-
puted values of the corresponding scattered energy
(efficiency) shown; the results given in the columns
denoted by Order 0-21 are the relative errors for the
values of the scattered energy calculated from the

RTO-MP-60 13-§
AC/323(SET)TP/12

high frequency code to orders 0-21 in the scattering
direction listed.
We start with a classical test example: a sinusoidal

h
profile f(z) = 7 cos(2rz). In this example we have

h = 0.025, A = 0.025 and an incidence angle of
40°. The errors given in this table were computed
through comparison with the results given by the
boundary variations code. The convergence of the
high frequency method is nicely illustrated by this
example which, in fact, validates both the high
frequency and the boundary variations calculation.
We note that an approximation of order 21 in powers
of 1/k is accurate to machine precision.

Scattering
Direction # | Order 0 | Order 5 | Order 15 | Order 21
0 2.0e-4 8.5e-10 4.1e-13 1.3e-14
1 3.1e-4 3.6e-9 1.6e-13 4.0e-15
2 2.5e-4 7.5e-9 8.7¢e-14 2.9e-16
3 2.6e-4 3.0e-9 1.8e-14 2.9e-16
4 1.8e-4 1.1e-10 4.6e-15 9.2e-16
5 2.1e-4 4.2e-10 5.6e-15 5.6e-16
6 1.4e-4 2.9e-9 1.6e-14 3.3e-16

Our next example corresponds to the same profile
as above with A = 0.025, A = 0.001 and an incidence
angle of 70° (that is, 20° from grazing). This high
frequency problem lies outside the domain of applica-
bility of the method of variation of boundaries. Our
errors here were computed through comparison with
a calculation of higher order (Order 15). Again we
see that the accuracy of the method is excellent in
this case as well.

Scattering

Direction # | Order 0 | Order 3 | Order 7 Order 11
0 9.7e-4 1.3e-8 4.0e-13 3.7e-16
1 2.5e-3 1.8e-8 5.6e-14 1.8e-16
2 2.4e-3 1.5e-8 5.4e-13 5.2e-16
3 1.2e-3 2.0e-8 9.le-14 5.8e-16
4 5.3e-3 1.6e-8 9.5e-13 2.3e-15
5 5.2e-4 2.4e-8 5.8e-14 4.5e-16
6 1.9e-2 6.0e-9 3.4e-12 5.3e-15
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For reference it is useful to indicate the times
required by these computations: the calculation of
order 21 shown in the first table resulted from a 17
second run on a DEC Alpha workstation (500MHz).
The order 11 run shown on the second table took 9
seconds.

The scattering surface in our next example was
produced by a hydrodynamic simulation of ocean
waves. The numerical technique used for this simula-
tion was directly inspired from the paper by Longuet-
Higgins and Cokelet [10].

HH Polarization - Backscattering

-3 i
: — High Order i
=¥F T - - F‘rstOrder(Riae)rj

-3+ - el ]

Return Loss

a2+ 1
-aar 1
.
I T

~30+
2 /
§ o
5-35 e =
& —
a0+ S — HighOrder |
- - First Order (Rice) |
~45- ' L
] 2 4 6 8 10 12 14 16 18 20
Grazing Angle

Figure 1: Scattered fields for low to very low grazing an-
gles for the simulated hydrodynamic surface shown above:
high-order full double precision accurate results (solid line)
compared to the first order calculation akin to Rice’s theory
(dashed line).

This surface resulted from the nonlinear interaction
of an initial configuration consisting of a long wave
(24 cm wavelength) and a rapidly varying short wave
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or “roughness” (3 cm wavelenght). The long wave
slope is ka = 0.2, which corresponds to a maximum
height of 0.76 cm. In Figure 1 we show the cor-
responding backscattering at low to very low graz-
ing angles. The high order perturbation method de-
scribed in Section 3 produces the scattered field for
this problem with double precision accuracy for an
incident plane wave down to 1° grazing in both po-
larizations. In Figure 1 we also provide a comparison
of the accurate results provided by the high order
method to those given by the corresponding first or-
der Rice theory. Note the large errors in the predic-
tions of the first order approach.

Our final example is the two-dimensional biperi-
odic surface depicted below. The corresponding
backscattering returns, which are plotted in the
following graph, were computed by the boundary
variations code with full double precision accuracy.

Backscattered Return - 3D

=20,

Return Loss

0 5 10 15 20 25 30

Grazing Angle
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i Introduction

rhe electromagnetic scattering from the surface of the ocean and other rough surfaces plays an important
.le in a wide range of applications, including SAR imaging, remote sensing, scattering from terrain, non
Jestructive testing in optics, etc. The analysis of the scattering processes involved in these applications
poses a rather challenging scientific problem as it requires description and understanding of diffraction by
.mplicated multiple-scales surfaces [1]. Computationally, the main difficulty arises from the multiple-
-cale nature of the scattering surfaces, whose spectrum spans a wide range of lengthscales. In fact,
Lnown techniques have been developed to treat limiting cases. For example. the high frequency case,
. which the wavelength X of the incident radiation is much smaller than the surface lengthscales, can
i handled by asymptotic methods such as geometrical optics or the Kirchhoff approximation. On the
orher hand, resonant problems where the incident radiation is of the order of the surface scale are treated
by perturbation methods. typically first or second order expansions in the height h of the surface (cf.
2. 3). However. when a multitude of scales is present on the surface none of the techniques above is
adequate. and attempts to combine them in a so-called two-scale approaches ([4, 2]) have been given. The
wsults provided by these methods are not always satisfactory — precisely as a result of the limitations
unposed by the low orders of approximation used in both, the high-frequency approximation and the
.mall perturbation methods.

Our approach to multi-scale scattering is based on use of expansions of very high order in both
parameters A and h. Such extensions require rather complex mathematical treatments. including complex
variable theory and analytic continuation. The resulting approach expands substantially on the range of
applicability over low order methods, and can be used in some of the most challenging cases arising in
applications. In this paper we focus on one of our high order expansions. namely a high-order perturbation
cxpansion in the wavelength A. Perturbation series of very high-order in h. have been introduced and
used elsewhere ([6, 7}): the combined algorithms are currently under development.

The presentation iu this paper focuses on the two-dimensional problem of scattering from a perfectly
conducting rough surface of a transverse electric polarized wave (TE). The scattered field created by an
incident plane wave impinging on the rough surface solves Heliholtz's equation with a Dirichlet boundary
condition. As is known [2] the scattered field can be computed from the surface current density v induced
on the surface f(z) by the incident plane wave. The function v solves the integral equation

ok i rtec
(1) v k) _ i/ h(kMM")g(z. 2z w(x' k)dr' = —e oz

2
0

477




27%
where
MM = (' = z)2 + (f(z') - f(z))? h(t) = tH{(t) H} Hankel function
g(z,x') = f(.’L") - f(.’l?])k[;[(z' - .’L'),f'(]:’) a = ksin(ginc) ﬂ = kcos(glnc)'

To solve this equation we use an asymptotic expansion of high order around k = 0. Our asymptotje
expansion results from the ansatz

- =y ()
(2) viz, k) = glaz—1df(z) Z ——-—';cn :
n=0

From equations (1) and (2) we obtain

+oo

3) S i (vle) = ga) = -2

n=0

where "
0
I"(z,k) = / R(kM M g(z.z')et(E @) =80 G- fan, (2 4g
-0
To obtain the coefficients v, (x) we must produce the asymptotic expansion of I™*(r, k) in powers of 1/k.
To do this we use two separate integration regions and we define

T
I"(z, k) = / h(kMM')g(x. z")ea(® —2) =8 ==, (g
-0
+00 , , .
I?(z, k) =/ R{EMAM " yg(z, 2 )e'®(Z 2 =820~ 1tzh ), gy
z

2 Asymptotic expansion of I7(z. k)
We focus first on an asymptotic expansion for /*(z, k). Using t =z’ — z we can write

+00
(4) I3z, k) = / h(kgy(z,1))glz,z + t)e' ™I ERI=TEN,, (7 4 1ay
0

where

o+(z,t) = V& + (f(z +1t) - f(z))%.
‘y For the simplest treatment we present here we assume that f(z) satisfies the condition

_ O(b;(r,t)

5 >0 for t >0

¢ (1)

so that the map ¢t — ¢, (z.t) is invertible; this condition is generally satisfied by rough surfaces considered
in practice. Then setting
u = ¢r(z.t) = t = ¢7 (zu)

we can rewrite equation (4) in the form

+o0 . + :l( . =y - =i
Ii(z,k) = / h(ku)g(f il ?1 - T.l))z/n(r+¢>;1(I,u))e“’“’+l~’=~“U-rd<f(~+m ZuN=f(2) g,
0 o4 (2,03 (2,u))
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or, calling ) .
_ 9(z,z+ ¢ (z,u)) -1
5 Fr(z,u) = @1 () vn(z + 01 (z,u))
vH(xu) = (f(z+¢7'(z,u) - f(z)) cos(Bine) ~ 67" (x, u) sin(Bin,),

+00 L
Iiz,k) = / h(ku)F} (z,u)e*v " (@u gy,
0

We can now use the Taylor series of the map u — F}(r,u) around u = 0

+oc +00
OMFF(z,0) u™ . 1 O™F}(x,0)
+ _ n ' - = t m + _ n :
Fn (I,U) - Z 6um m' Z pn‘m(z)u pn,m(x) - m! Bu’"
m=0 m=0
to express I} (z, k) in the form
+o0 +2 - »
Nz, k) = Zp;m(x)/ umh(ku)e T (zul gy
m=() 0
6)
+x 4 +00 +oc 4
Prm(T) —ikut (o n Py (2)
= Z % A v h(v)e Ry = Z k‘nH_I A*(k,m,x)
m=0 m=0

where we have set
toe hky T v
(7) At(k,m,z) = / v h(v)e THYT e %) gy,
0

{ These non-convergent integrals must be re-interpreted by means of analytic continuation -- in a manner
similar to that use in the definition and manipulation of Mellin transforms. We do not provide details
about this analytic continuation procedure here; see [8] for a complete treatment in the case of the Mellin

transform.)
To complete our expansion of I (z, k) we need to produce a corresponding expansion of the quantity

A7 (k,m, x) in powers of 1/k. With ¢ = 1/k we call
- +oxo +
(8) AY(e,m,z) = At (k,m,z) = / v h(v)ev () gy
0
By evaluation of the successive derivatives of At(e,m.x ) with respect to = at ¢ = 0 it is easy to check

that the coefficients of the Taylor series of A*(e,m.z) with respect to € can be obtained directly if all
the integrals in the sequence

Wt

o . vt
*(0,m.z) = / v™h(v) et TR 50 gy
0

- . . ot
are known; for example, the first two such derivatives are given by (with v} (z) = M (£, u=0))
u

0A*(e,m. 1) _ U -,
P = - 2 AT0,m+2,1)
=0
*At(e.m. 1) pF () < (¥3)(z) -
— — ‘4+ 0 q - - == a4t .
507 By i 3 (O,m + 3,x) A A0, + 4, 1)

Using equations (6) and (8) the expansion for I3 (z, k) results; clearly, the expansion of ["(z, k) can be
obtained through a similar derivation. The combined expansion for I™(z,k) involves combinations of
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quantities such as p} ,.(z), ¥} (z), pr.m(2), Y7 (2), A*(0,m,z), A~(0,m, ). It can be shown that a.llrofﬁ'
these quantities — and therefore the integrals A*(0,m, z) for all m— can be obtained from the.integrals

+00
/ v™ 1 H} (v) cos(av)dv if m even
0

+00
/ v™ 1 H] (v) sin(av)dv if m odd
0
for which closed form formulas are available [5].

3 Numerical results

To test the accuracy of our numerical procedure we compared our results to a highly accurate boundary
variation code (cf. [6]) in a region (in wavelength) where the two algorithms were very accurate as shown
below. Note that these two methods are substantially different in nature: one is a high order expansion

in A whereas the other is a high order expansion in the height A of the profile.
All our resuits are for normal incidence illumination. The results listed in the columns Order 0-17

are the relative errors for each scattered energy (efficiency) listed.
h
We start with the simplest example namely a sinusoidal profile f(z) = 3 cos(2nz). In this example
we have A = 0.025 and A = 0.025.

Scattering Scattered
Direction # Energy Order 0 | Order 1 | Order 3 | Order 5 | Order 9 | Order 11
0 4.843033211037387e-02 1.9e-3 4.8e-6 1.9e-8 | 4.2e-11 | 1.6e-15 | 0.0e-16

4.533269321280629%-02 || 2.3e-3 2.4e-6 8.3e-9 | 2.4e-11 | 1.8e-15 | 0.0e-16
8.263582066556663e-02 || 8.3e-4 3.0e-6 1.3e-8 | 3.5e-11 | 3.4e-16 | 0.0e-16
1.032017750281185e-03 || 1.8e-2 7.4e-5 3.7e-8 | 1.3e-10 | 9.7e-15 1.0e-15
1.019744820363490e-01 1.0e-3 1.3e-6 | 7.1e-10 | 1.6e-12 | 0.0e-16 | 0.0e-16
1.396970992023250e-01 1.2e-4 3.4e-6 5.1e-9 | 8.7e-12 | 0.0e-16 | 0.0e-16
7.578492663719054e-02 || 7.9e-4 6.5e-6 1.3e-8 | 2.6e-11 | 3.7e-16 | 0.0e-16
2.361867030378681e-02 || 1.3e-3 1.0e-5 2.3e-8 | 5.5e-11 | 8.8e-16 | 0.0e-16

~N[OD|[ O ] O DO

LR e

Our next example is given by the profile f(z) = =(cos(27z) + cos(4rz)). In this example we have

h =0.01 and X = 0.025.

Scattering Scattered
Direction # Energy Order 0 | Order 1 | Order 5 | Order 9 | Order 11 | Order 15
0 1.983702874853860e-01 || 1.4e-3 6.7e-6 | 6.3e-10 | 1.8e-13 | 5.0e-15 0.0e-16
1 2.125625186015414e-02 || 4.3e-3 7.3e-6 | 8.6e-10 | 4.6e-14 | 4.9e-16 0.0e-16
2 5.109656298137152e-02 || 4.2e-3 5.3e-6 1.3e-9 | 3.5e-14 | 6.9e-15 0.0e-16
3 1.350594564861170e-01 || 1.1e-3 3.0e-6 | 1.8e-10 | 5.l1e-14 | 6.9¢-16 0.0e-16
4 1.670755436364386e-02 || 4.3e-3 928e-6 1.5e-9 | 1.8e-13 | 0.0e-14 0.0e-16
5 1.041839113172000e-01 || 8.7e-4 1.1e-5 | 4.7e-10 | 3.8e-14 | 0.0e-16 0.0e-lﬂ
6 3.029977474761340e-02 || 7.6e-4 1.1e-5 | 4.8e-10 | 1.0e-15 | 2.0e-15 0.0e-16
7 2.82840921769345%-02 | 2.5e-3 3.2e-5 1.8¢-9 | 3.5e-14 | 4.6e-15 6.1e-16
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Our last example is third order “Stokes” wave (cf. [9]) given by f(z) = g(_ cos(2wz) + 0.35 cos(dnz) ~
0.035 cos(67z)). Here h = 0.03 and A = 0.025.

A S N 2 N N N2 N N

Scattering Scattered '
Dircction # Energy Order 0 | Order 1 | Order 5 | Order 9 | Order 13 | Order 17
0 1.168946586356380¢e-01 1.1e-3 2.1e-6 1.0e-9 1.8e-12 | 8.5e-15 0.0e-16 |

1.259788401686170e-01 1.1e-3 1.0e-5 | 9.0e-10 | 5.8e-13 | 7.9e-15 0.0e-16
7.407393363864252¢-03 || 3.2e-3 2.7e-5 3.6e-9 | 1.9e-12 | 9.6e-15 0.0e-16
2.657137880809774e-02 || 5.1e-3 1.8e-5 1.3e-9 | 4.1e-13 | 1.4e-14 1.0e-15
4.889524445075034e-02 || 2.5e-5 1.7e-5 1.9e-9 | 2.4e-13 | 9.9e-16 2.8e-16
1.497662001023263e-02 || 4.7e-3 2.7e-5 3.6e-9 | 1.4e-12 1.3e-14 0.0e-16
1.617786430146189¢-03 || 1.de-2 5.9e-6 2.0e-9 | 9.0e-13 | 2.8e-14 1.9e-15
2.523077976253081e-02 || 5.4e-3 6.9¢-6 | 6.7e-10 | 1.1e-12 | 2.8e-14 0.0e-16

=1 O UV | QO] LD =

Our implementation of this method is very efficient. All the functions considered are decomposed in
their Fourier series, in particular no discretization points on the surface are used. The largest run time is
22 sec for the order 17 calculation presented in the table above on a DEC Alpha workstation (500MHz).
A more typical run for the order 11 calculation presented in the second example took 3 seconds.
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We present an innovative algorithm for the computation of electromag-
netic scattering from rough surfaces, with emphasis on ocean scattering ap-
plications. Our new method couples a high-order boundary variation method
with an approach based on high-order, high-frequency asymptotic expansions
of singular integrals.

To solve a scattering problem on a rough surface — composed of a
smooth swell of general shape underlying a rough, highly oscillatory layer —
we view the roughness as perturbation of the swell. The boundary variations
method. used extensively in previous studies (Sei et al., Radio Science, 34,
385-411. 1999, Bruno O. and Reitich F., J. Opt. Soc. A., 10, 2551-2562,
1993). allows us to evaluate the scattered field from such rough surfaces by
means of analytic continuation of an associated perturbation series of high
order (Bruno O. and Reitich F., Proc. R. Soc. Edinburgh. A, 122, 317-340,

1992},

The evaluation of each one of the coefficients in this perturbation ex-
pansion requires the solution of a scattering problem on a smooth surface
with highly oscillatory boundary conditions. The solution of this notoriously
difficult problem is computed efficiently and accurately by means of a new,
high-order, high-frequency asymptotic expansion for the surface currents. Qur
high-frequency solver, which is designed to apply in the small wavelength
regime — in which geometrical optics and the Kirchoff approximation are fre-
quently used —, should be applicable to a wide range of scattering problems.
Unlike the geometrical optics type expansions where amplitudes can become
unbounded (at caustics), our high frequency algorithm is entirely rigorous and
highly accurate.

This presentation will describe our approach to the general rough surface
problem with a detailed discussion on the high-frequency solver. Numerical
results in a variety of cases will be presented. demonstrating the accuracy and
computational efficiency of our new methods.
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HIGH-ORDER HIGH-FREQUENCY ROUGH SURFACE

SCATTERING SOLVER

This invention was made with Government support under F49620-99-C-
0014 awarded by AFOSR/DARPA. The Government has certain rights in this

invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to scattering processes, and in
particular to computation of electromagnetic scattered fields from multiple scale
geometries.

2. Discussion of the Related Art

Electromagnetic scattering from rough surfaces such as the surface of the
ocean plays an important role in a wide range of applications including imaging,
remote sensing, and detection. The analysis of the scattering processes

involved in these applications poses a rather challenging scientific problem that
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requires description and understanding of diffractionvby complicated surfaces.
Computationally, the main difficulty arises from the multiple-scale nature of the
scattering surfaces, whose spectrum spans a wide range of lengthscales. A
number of techniques have been developed to treat associated limiting cases.
For example, the high frequency case, in which the wavelength, 1, of the incident
radiation is much smaller than the surface lengthscales can be handled by
asymptotic methods such as geometrical optics or physical optics
approximations. On the other hand, resonant problems where the incident
radiation is of the order of the surface scale are treated by perturbation methods,
typically first or second or expansions in the height, h, of the surface.

However, when a multitude of scales is present on the surface, none of
the techniques described above either alone or in combination in so-called two-
scale approaches is adequate. The two-scale models imply a splitting of the
surface into a large scale and a small scale. Typically, a first order
approximation in wavelength is used to treat the smooth components of the
surface, and a first order in surface height is used to deal with the rough
components of the surface. The results provided by these methods are not
satisfactory precisely as a result of limitations imposed by the low orders of
approximation used in both, the high-frequency approximation method and the

small perturbation method.
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SUMMARY OF THE INVENTION

The present invention provides a rough surface scattering method and
solver for efficiently computing electromagnetic scattered fields resulting from an
incident wave being reflected from a slowly varying surface (high frequency
case). The claimed approach to multi-scale scattering is based on the use of
expansions of high order in parameter 1. The resulting high-order perturbation
expansion approach expands substantially on the range of applicability over low
order methods, and can be used in some of the most challenging cases arising in
applications. A surface current is induced by the incident wave. The surface
current is determined by solving a surface current integral equation. A surface
current ansatz is substituted into the surface current integral equation, wherein a
surface current series expansion is formed having a high frequency order. The
surface current series expansion includes an oscillatory factor and surface
current coefficients to be determined. An asymptotic expansion of the oscillatory
integral is produced such that a Taylor series including a non-convergent integral
is formed. The non-convergent integral is re-interpreted by means of analytic
continuation. The re-interpreted non-convergent integral is inserted into the
Taylor series to solve for the surface current coefficients. The surface current
coefficients are inserted into the surface current series expansion and the
surface current is obtained by summing the power series in A with the known
surface current coefficients. Finally, the scattered field is computed based upon

the solved surface current, by quadratures.




10

15

20

TRW Docket No. 11-1151

For a more complete understanding of the invention, its objects and
advantages, reference may be had to the following specification and to the

accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a flow diagram of a method for computing scattered
fields in accordance with the teachings of the invention; and

Figure 2 illustrates a transverse electric polarized wave (TE) impinging on
a rough surface.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to Figure 1, a method of computing a scattered field according to
the present invention is shown. The method is based on the use of expansions
of high order in the parameter 1. Such extensions require rather complex
mathematical treatments, including complex variable theory and analytic
continuation. The resulting approach expands substantially on the range of
applicability over low order methods, and can be used in some of the most
challenging cases arising in applications. Here, we focus on a high-order

perturbation expansion in the wavelength 1.

1. Introduction
With additional reference to Figure 2, a transverse electric polarized wave
(TE) 12, with electric field, £, pointing out of the figure, impinging on a rough

surface 10 is illustrated. The method is particularly suitable for two-dimensional
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problems of scattering from a perfectly conducting rough surface 10 of a
transverse electric polarized wave (TE) 12. A scattered field created by the
incident plane wave 12 impinging on the rough surface 10 solves Helmholtz's
equation with a Dirichlet boundary condition. The scattered field can be
5 computed from the surface current density, v, 14 induced on the rough surface
f(x) 10 by the incident plane wave 12 by integrating the solved surface current
against the Green's function. See, Wave scattering from rough surfaces, by A.G.
Voronovich, Springer-Verlag, Berlin, 1994, which is hereby incorporated by

reference. The function v solves the integral equation:

0 "—(’izﬁ-i [ Wb g, e ' =~ step 20,
where
MM’ = \/ (x=x)" +(f(x)- f(x))’ h(t)=tH!(t) H/ Hankel function

g(x,x)= fl)- f(zjj\_/j(’f'—x)f () a =ksin(@,, ) B =kcos(8,,).

15 To solve this equation, an asymptotic expansion of high order around k=« is

used. The asymptotic expansion results from the ansatz
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From equations (1) and (2)4 we obtain the following equation for the surface

current coefficients;
3) f-l—(v,, (x)-%l"(x,k)] =2, step 24.
where
1" (x, k)= [ Hdad g (x, x'Ye o= HoUCHI Dy (i),

To obtain the coefficients v, (x) we produce the asymptotic expansion of "(x, k),

an oscillatory integral, in powers of 1/k, step 26. To do this we use two separate
integration regions which we define below. However using a single integration

region or multiple integration regions is within the scope of the invention.

I" (x, k)= L h(kMM')g(x, x.)e,-a(x'_x)_w( f(.v’)-f(.\'))v" (x’)dx'

12(5K) = [ M Y, e Uy (1)
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2.  Asymptotic expansion of /" (x, k)
We focus on an asymptotic expansion for /" (x,k). Using ¢=x'-x we can

write
(4) 1"(x, k)= r (ko +(x,0))g(x, x + )o@ P L1y (x4 )t

where

#+ (1) =+ (f(x +0)- F5))

For the simplest treatment we present here we assume that f(x) satisfies the

condition

¢ +(x,1)= og+x.1) ';fx’t) >0 forr20

so that the map ¢+ ¢+(x,t) is invertible; this condition is generally satisfied by

rough surfaces considered in practice. Then setting
u=¢+(x,t) = t=¢" (x,u)

we can rewrite equation (4) in the form
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12 (x,k)= [ hlfa L (jc+¢¢-: ((x l;)) oo+ (g o bbbl

or, calling
. B g(x, x+¢ (x,u ) .
F, (x, u) = ¢’+(x, 5 (x, u)y v, (x +9, (x, u )
®)
5 '// + (x’ u) = (f(x + ¢+—] (x’ u))‘ f(X))COS(ei"C )— ¢:] (x’ u)Sin(einc )’

12 )= [ W)y (e, u)e ™)

We can now use the Taylor series of the map u > F,(x,u) around u =0

+ Ma’”F 0 m
Fa)-5TREIC S e )L )

m=0 all " m! m+0 m! a "

to express I”(x, k) in the form

10 12 ) = 3 pr () [ Bl ™0y

m=0

(6)
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I"(x,k) = i Mf’ v"h(v)e 'kw( ] dv = Z P ",'H A +(k,m, x), step 28

m+1 -
m=0 k m=0

where we have set

(7) A“(k,m,x):f v h(v)e (s )

These non-convergent integrals are re-interpreted by means of analytic
continuation — in a manner similar to that used in the definition and manipulation
of Mellin transforms. See Asymptotic expansions of integrals (hereby
incorporated by reference), by N. Bleistein and R.A. Handelsman, Dover
Publications, New York, 1986, for a complete treatment of this analytic

continuation procedure in the case of the Mellin transform, step 30.

To complete our expansion of 1;'(x,k) we produce a corresponding

expansion of the quantity 4*(k,m, x) in powers of 1/k. With ¢ =1/k we call
(8) A (emx)= A" (k.m,x) = ["v hle™ e,
By evaluation of the successive derivatives of 4*(¢.m.x) with respect to ¢ at

£=0 it is easy to check that the coefficients of the Taylor series of E*(s, m, x)

with respect to ¢ can be obtained directly if the integrals in the sequence
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~ @® -igz:x
A*(O,m,x)=£'v”'h(v)e "'('O)dv,

are known. For example, the first two such derivatives are given by

+

(with vy (x)= a;’u"f, (x,u=0)J

o4d* (a, m, x) W, (x)

= =

o | om0 > A7 (0,m+2,x)

822+(8,m,x)

AP i@
Py = A7 (0,m+3,x) . A7 (0,m+4,x).

l £=0

Using equations (6) and (8) the expansion for 17 (x, k) results. The expansion of
I"(x, k) is obtained through a similar derivation. The combined expansion for
I"(x,k) involves the combinations of quantiies such as

Prw), wix) pr.(x) wi(x), 47(0,mx), 47(0,m,x). It can be shown that the

integrals 4*(0,m, x) for all m — can be obtained from the integrals

r v H!(v)cos(av)dv if m even

-10-
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r v™ H! (v)sin(av)dv if m odd

for which closed form formulas are available in Handbook of mathematical
functions with formulas, graphs, and mathematical tables, by M. Abramowitz and
I. Stegun, US Dept Commerce, June, 1964, which is hereby incorporaied by
reference, step 32.

Next, the high frequency order for the computation is selected, step 34.
The scope of the invention includes a high frequency order that is 2 or greater.
Those skilled in the art will readily recognize that selection of the high frequency
order involves a trade-off between computation speed and accuracy which will
vary depending on the particular application.

Finally, having determined the surface current coefficients, the surface
current is computed with formula (2) for, and the scattered field is computed by

integrating the solved surface current against Green's function, step 36.

3. Numerical results

To test the accuracy of the procedure we compared our results to a highly
accurate boundary variation code in a region (in wavelength) where the two
algorithms were very accurate as shown below. See, Numerical solution of
diffraction problems: a method of variation of boundaries I, /I, ll, by O. Bruno and
F. Reitich, J. Opt. Soc. A 10, 1168-1175, 2307-2316, 2551-2562, 1993. Note

that these two methods are substantially different in nature: ours is a high order

-11-
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that these two methods are substantially different in nature: ours is a high order

expansion in 4 whereas the other is a high order expansion in the height h of the

profile.

All our results are for normal incidence illumination. The results listed in

5 the columns Order 0-17 are the relative errors for each scattered energy

(efficiency) listed.

We start with the simplest example namely a sinusoidal profile

f(x)= gcos(znx). In this example we have #=0.025 and 1 =0.025.

Scattering Order | Order | Order | Order | Order | Order
Scattered Energy

Direction # 0 1 3 5 9 11
0 4.843033211037387e-02 | 1.9e-3 | 4.8e-6 | 1.9e-8 | 4.2e-11 | 1.6e-15 | 0.0e-16
1 4.533269321280629¢-02 | 2.3e-3 | 2.4e-6 | 8.3e-9 | 2.4e-11 | 1.8e-15 [ 0.0e-16
2 8.263582066556663e-02 | 8.3e-4 | 3.0e-6 | 1.3e-8 | 3.5e-11 | 3.4e-16 | 0.0e-16
3 1.032017750281185e-03 | 1.8e-2 | 7.4e-5 | 3.7e-8 | 1.3e-10 | 9.7e-15 | 1.0e-15
4 1.019744820363490e-01 | 1.0e-3 | 1.3e-6 | 7.1e-10 | 1.6e-12| 0.0e-16 | 0.0e-16
5 1.396970992023250e-01 | 1.2e-4 | 3.4e-6 | 5.1e-9 | 8.7e-12 | 0.0e-16 | 0.0e-16
6 7.578492663719054e-02 | 7.9e4 | 6.5e-6 | 1.3e-8 | 2.6e-11 | 3.7e-16 | 0.0e-16
7 2.361867030378681e-02 | 1.3e-3 | 1.0e-5 | 2.3e-8 | 5.5e-11 | 8.8e-16 | 0.0e-16

Our next example is given by the profile

10 example we have 2=0.01 and 1 =0.025.

-12-

flx)= g(cos(Zzzx)+ cos(4zx)). In this




TRW Docket No. 11-1151
HD&P Docket No. 4675-000398

P SN G N N N

Scattering Order | Order | Order | Order | Order | Order
Scattered Energy
Direction # 0 1 5 9 11 15
0 1.983702874853860e-01 | 1.4e-3 | 6.7e-6 | 6.3e-10 | 1.8e-13 | 5.0e-15 0.0e-16
1 2.1256251860154146-02 | 4.3e-3 | 7.36-6 | 8.66-10 | 466-14 | 4.96-16 | 0.06-16
2 5.109656298137152e-02 | 4.2e-3 | 5.3e-6 | 1.3e-9 | 3.5e-14 | 6.9e-15 0.0e-16
3 1.350594564861170e-01 | 1.1e-3 | 3.0e-6 | 1.8e-10 | 5.1e-14 | 6.9e-16 | 0.0e-16
4 1.670755436364386e-02 | 4.3e-3 | 928e-6 | 1.5e-9 | 1.8e-13 | 0.0e-14 | 0.0e-16
5 1.041839113172000e-01 | 8.7e4 | 1.1e-5 | 4.7e-10 | 3.8e-14 | 0.0e-16 | 0.0e-16
6 3.029977474761340e-02 | 7.6e-4 | 1.1e-5 | 4.8e-10 | 1.0e-15 | 2.0e-15 | 0.0e-16
7 2.828409217693459¢-02 | 2.5e-3 | 3.2e-5 | 1.8e-9 | 3.5e-14 | 46e-15 | 6.1e-16

Our last example is a third order “Stokes” wave (cf. [9]) given by

fl(x)= -;’-(— cos(27x)+0.35 cos(47x) - 0.035 cos(67x)). Here h=0.03 and A =0.025.

SN T N N N S

Scattering Order | Order | Order | Order | Order Order
Scattered Energy

Direction # 0 1 5 9 13 17
0 1.168946586;556380&01 1.1e-3 | 2.1e-6 | 1.0e-9 | 1.8e-12 | 8.5e-15 0.0e-16
1 1.259788401686170e-01 1.1e-3 | 1.0e-5 | 9.0e-10 | 5.8e-13 | 7.9e-15 0.0e-16
2 7.407393363864252e-03 | 3.2e-3 | 2.7e-5 | 3.6e-9 | 1.9e-12 | 9.6e-15 0.0e-16
3 2.657137880809774e-02 | 5.1e-3 | 1.8e-5 | 1.3e-9 | 4.1e-13 | 1.4e-14 | 1.0e-15
4 4.889524445075034e-02 | 2.5e-5 | 1.7e-5 | 19e-9 | 2.4e-13 | 9.9e-16 | 2.8e-16
5 1.497662001023263e-02 | 4.7e-3 | 2.7e-5 | 3.6e-9 | 1.4e-12 | 1.3e-14 0.0e-16
6 1.617786430146189e-03 | 1.4e-2 | 59e-6 | 2.0e-9 | 9.0e-13 | 2.8e-14 | 1.9e-15
7 2.523077976253081e-02 | 5.4e-3 | 6.9e-6 | 6.7e-10 | 1.1e-12 | 2.8e-14 | 0.0e-16

-13-
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Our implementation of this method is very efficient. All the functions
considered are decomposed' in their Fourier series. The largest run time is 22
sec for the order 17 calculation presented in the table above on a DEC Alpha
workstation (600MHz). A more typical run for the order 11 calculation presented
in the second exampie took 3 seconds.

Thus it will be appreciated from the above that as a result of the present
invention, a method for computing a scattered field resulting from an incident
wave being reflected from a rough surface is provided by which the principal
objectives, among others, are completely fulfilled. It will be equally apparent and
is contemplated that modification and/or changes may be made in the illustrated
embodiment without departure from the invention. Accordingly, it is expressly
intended that the foregoing description and accompanying drawings are
llustrative of preferred embodiments only, not limiting, and that the true spirit and
scope of the present invention will be determined by reference to the appended

claims and their legal equivalent.

-14-
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What is claimed is:

1. A method of computing a scattered field resulting from an incident
wave being reflected from a rough surface, a surface current being induced by
the incident wave, comprising the steps of:

representing the surface current as high-order high-frequency
expansion;

substituting a surface current ansatz into the surface current
integral equation, wherein a surface current series expansion is formed having a
high frequency order, the surface current series expansion including an
oscillatory integral and surface current coefficients;

producing an asymptotic expansion of the oscillatory integral;

evaluating the asymptotic expansion for the surface current

coefficients;

inserting the surface current coefficients into the surface current

series expansion;

evaluating the surface current series expansion for the surface

current; and

computing the scattered field based upon the solved surface

current.

-15-
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2. The method of Claim 1 wherein the step of producing an
asyrﬁptotic expansion includes the steps of:

forming a Taylor series that includes a non-convergent integral;

re-interpreting the non-convergent integral by means of analytic
continuation; and

inserting the re-interpreted non-éonvergent integrals into the Taylor

series to solve for the surface current coefficients.

3. The method of Claim 2 wherein the step of producing an asymptotic
expansion further includes the step of dividing the oscillatory integral into split

integrals covering separate integration regions.

4, The method of Claim 1 wherein the selected high frequency order

is preferably 20.

5. The method of Claim 2 further comprising the step of solving the re-

interpreted non-convergent integral using a closed form formula.

6. The method of Claim 2 further comprising the step of solving the re-

interpret non-convergent integral using numerical analysis.

7. The method of Claim 1 wherein the step of computing the scattered

field includes integrating the solved surface current against Green's function.

-16-
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8. The method of Claim 1 wherein the oscillatory integral is

1" (x, k)= [ (kMM )g(x, x')e = -HpUERTEDy (1)

where; MM'= \/ (=) +(f(x)- £ () h(e)=tH.(r) H| Hankel function

g(x x')= f&e)-1 (A/ZA-:I('f’—x)f (&) o:‘= ksin(&,"c) p=k cos(H,,,c).

9. The method of Claim 2 wherein the Taylor series is

k) Zp":u A+ (k,m,x)

m=0

10. A method of computing a scattered fieid resuiting from an incident
wave being reflected from a rough surface having a characteristic lengthscale, a
surface current being induced by the incident wave, the incident wave having a
wavelength less than the rough surface lengthscale, comprising the steps of:
representing the surface current as a high-order high-frequency
expansion;
substituting a surface current ansatz into the surface current
integral equation, wherein a surface current series expansion is formed having a
high frequency order, the surface current series expansion including an

oscillatory integral and surface current coefficients:

17-
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producing an asymptotic expansion of the oscillatory integral such
that a Taylor series including a non-convergent integral is formed;
re-interpreting the non-convergent integral by means of analytic

continuation;

inserting the re-interpreted non-convergent integrals into the Taylor
series to solve for the surface current coefﬁcieﬁts;

inserting the surface current coefficients into the surface current

series expansion;

evaluating the surface current series expansion for the surface

current; and
integrating the solved surface current against Green's function,

whereby the scattered field is determined.

11.  The method of Claim 10 wherein the step of producing an
asymptotic expansion further includes the step of dividing the oscillatory integral

into split integrals covering separate integration regions.

12. The method of Claim 10 wherein the high frequency order is at

least about three.

13.  The method of Claim 10 further comprising the step of solving the

re-interpreted non-convergent integral using a closed form formula.

-18-
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14. The method of Claim 10 wherein the Taylor series is

I"(x,k)= Zp'”"(x)A+ kmx)

k m+l
m=0

15.  The method of Claim 10 further comprising the step of solving the

re-interpreted non-convergent integral using a closed form formula.

16.  The method of Claim 15 wherein the closed form formula is
r v™ H! (v)cos(av)dv if m even
and

["v™ &} ()sin(av)av if m odd.

17. A solver for computing a scattered field resulting from an incident
wave being reflected from a rough surface having a characteristic lengthscale, a
surface current being induced by the incident wave, the incident wave having a
wavelength less than the rough surface lengthscale, comprising:
means for representing the surface current as a high-order high-
frequency expansion;
means for substituting a surface current ansatz into the surface
current integral equaﬁon, wherein a surface current series expansion is formed
having a high frequency order, the surface current series expansion including an

oscillatory integral and surface current coefficients:

-19-
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means for producing an asymptotic expansion of the oscillatory
integral such that a Taylor series including a non-convergent integral is formed;

means for re-interpreting the non-convergent integral by means of
analytic continuation;

means for inserting the re-interpreted non-convergent integrals into
the Taylor series to solve for the surface currént coefficients;

means for inserting the surface current coefficients into the surface
current series expansion;

means for evaluating the surface current series expansion for the
surface current; and

means for integrating the solved surface current against Green's

function, whereby the scattered field is determined.

18.  The solver of Claim 17 wherein the high frequency order is at least

about three.

19.  The solver. of Claim 17 further comprising means for dividing the

oscillatory integral into split integrals covering separate integration regions.

-20-
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HIGH-ORDER HIGH-FREQUENCY ROUGH SURFACE
SCATTERING SOLVER

ABSTRACT OF THE DISCLOSURE

The present invention provides a rough surface scattering method and
solver for efficiently computing electromagnetic scattered fields resulting from an
incident wave (12) being reflected from a surfacé slowly varying on the scale of
the wavelength (10). The wavelength claimed approach to high-frequency
scattering is based on the use of expansions of high order in parameter A,
wavelength of the incident radiation. The resulting high-order expansion
approach expands substantially on the range of applicability over low order
methods, and can be used in some of the most challenging cases arising in
applications. The surface current (14) induced by the incident wave (12) is
represented as a high-order high-frequency expansion (20). The surface current
ansatz is substituted into the surface current integral equation (22), wherein a
surface current series expansion is formed (24) having a high frequency order.
The surface current series expansion includes an oscillatory integral and surface
current coefficients. An asymptotic expansion of the oscillatory integral is
produced having a Taylor series (26). The Taylor series is evaluated and the
surface current coefficients (32) determined. The surface current coefficients are
inserted into the surface current series expansion. The surface current series
expansion is evaluated to yield the surface current (36). Finally, the scattered

field is computed based upon the solved surface current (36).

-21-
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2 Program Objectives:

The statement of work objectives for the first year of this program is:

Developmént and initial implementation of a new approach to calculate scattering from multiple
scale surfaces containing large curvature and small-scale corrugations.

Initial numerical calculations for simple 2-D two scale geometries relevant to ocean applications.
Objective 1 includes:

1.a Development of a very accurate algorithm to solve high-frequency scattering problems
on a smooth non-planar surface.

1.b Development of the integrated algorithm that treats the short scale surface variations
(roughness) as perturbations of the long scale modulations.

3. Status of effort:

A new algorithm has been developed and implemented, and is currently being tested to
calculate the scattering return from smooth, slowly varying, arbitrary surfaces (the high-
frequency scattering problem) (Objective 1.a). The algorithm relies on an integral equation
formulation and makes use of an innovative high-order high-frequency rigorous asymptotics
expansion of the singular integrals. The method includes all multiple scattering terms with no
iterations of the integral equation. The initial calculations to third order have been validated by
comparison with a previous developed boundary variation method in the overlap region of
validity. The results show an improvement of 5 orders of magnitude over Kirchhoff (0™ order).
Higher order calculations are currently being implemented. The integrated algorithm to
calculate the scattering from short scale roughness on long scale swell surfaces (Objective1.b)
has been formulated. Initial implementation will start once the high-frequency algorithm is
validated to arbitrary orders.

4. Accomplishments/New Findings

During the initial 5 months of this project the following significant research has been
accomplished:

The innovative algorithm proposed at the beginning of this project to compute the scattering
return from multi-scale surfaces has been formulated in detail. The algorithm consists of two
main elements: A) A boundary variation method that reduces the muiti-scale problem to a
sequence of high-frequency scattering problems on a smooth surface. B) A new high-order,
high frequency method.

The high-frequency part of this algorithm, which entails the highly accurate calculation of the
scattering return from surfaces with characteristics scales larger than the radiation wavelength

has been implemented and successfully validated to third order. Results that are 5 orders of




magnitude more accurate than Kirchhoff (O™ order) have been obtained, demonstrating the
advantages of the new method.

The implerhentation of the high- frequency algorithm is based on an ingenious asymptotic
expansion of the highly singular integrals and on the analytic continuation of the divergent
integrals. A numerically efficient version of the algorithm was found to compute accurately these
expansions to all orders. High accuracy is crucial for this method since it will be used
repeatedly to solve the general problem.

These initial results are critical to an accurate calculation of the scattering return from multiple
scale surfaces, in particular for ocean surveillance applications. For example, recent
experimental results have shown polarization losses of the order of —80 dB for high horizontal to
vertical polarization ratios (HH/VV>1) that can not be predicted with standard scattering models.
The algorithm developed in this program will have enough accuracy to predict those large
losses. Further, once validated, this algorithm will be able to predict radar returns not only for
ocean but also for terrain relevant missions where multi-scale surfaces play a dominant role in
the characteristics of the return.

5 Personnel Supported:

Dr. Alain Sei, TRW: (supported by this program ~ 65% of his time); Dr. Maria Caponi, TRW:
(supported by this program <5% of her time); Dr. Oscar Bruno, MathSys and Caltech (Technical
services, supporter by this program <10% of his time)

6 Publications: None on current contract period.
7 Interactions/Transitions:

Participation/presentation: Poster and VG at ACMP DARPA Pl meeting. S.F. June 30-July1,

1999.
Transitions: the algorithm being developed is planned to be used in conjunction with the TRW

hydrodynamic codes to obtain a predictive model of ocean radar returns. The results from this
combination code will be relevant to Navy applications.

8 New Discoveries: A new method to solve the high-frequency scattering problem with high

accuracy (16 digits)
9 Honors/Awards: None during current contract period
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2. Program Objectives:

The statement of work objectives for the second year of this program were:
Parametric'investigations with 2-D multi-scale code for surfaces relevant to ocean remote
sensing applications

Development and initial implementation of new approach to 3-D surfaces.

These objectives have been revised to:

Validation of the 2-D high-order high-frequency code for large scale surfaces and its use in
parametric investigations relevant to ocean remote sensing applications.

Formulation and implementation of the 2-D muiti-scale algorithm.

Objective 1 includes

1.a. Efficient implementation of the high-frequency algorithm to arbitrary order.

Objective 2 includes:

2.a. Development of coupling between the high frequency and the boundary variation methods,
including innovative use of Cauchy-Kowalesky argument for computation of high order normal
derivatives.

2.b. Treatments of high-order normal derivatives through the use of Helmholtz’'s equation
second order normal derivatives and high-order tangential derivatives to avoid hyper-singular
integrals.

The revision of the objectives was due in part to the need for a more efficient and accurate
implementation of the high-frequency algorithm than the one carried out during the first year of
this contract. The original implementation was not easily amenable to very high order
expansions therefore limiting the range and accuracy of application of the method. However,
the repeated use of the high-frequency code in the final muitiple scale algorithm requires double
digit accuracy to arbitrary orders. The new implementation uses subtle and intensive algebraic
treatments that result in a very efficient and innovative algorithm, currently being considered for
a patent application. However, this revised implementation delayed the coding of the final muiti-
scale algorithm. Further delay also resulted from extensive validations of the resuilts.

3. Status of effort:

The new high-order-high frequency algorithm has been extended to arbitrary order and
accuracy. This extension relies on the development of a library of subroutines for the efficient
algebraic treatment of infinite Taylor-Fourier series. The code has been validated by
comparison with the method of variation of boundaries in the overlap region in wavelengths
where both methods are valid. The code has been exercised for numerous configurations,
machine precision accuracy was reached in cpu times of seconds in all cases (Rev. objective

1). A detailed formulation of the multiple-scale algorithm including an innovative coupling of the




new high-order high frequency method and the boundary variation method has been completed
and implemented. The details of the method have been documented. The complete Fortran
implementétion of the integrated algorithm is expected in the next few weeks. Currently, each
segment of the Fortran code is being carefully tested and verified (Rev. objective 2).
Afterwards, careful parametric investigations relevant to ocean remote sensing will be
performed.

4. Accomplishments/New Findings

During the last year the following significant accomplishments have been reached in this project:
1 Alibrary of subroutines for the efficient algebraic treatment of infinite Taylor-Fourier

series was completed. These series were introduced specifically by us to meet the
accuracy and efficiency demands of this project.

2 Full double precision agreement was obtained between the high-order high-frequency
method and the boundary variation method for numerous and varied examples
throughout the overlap region in wavelengths where both methods are valid. Computing
times of the order of seconds on a 600MHz desktop workstation were achieved in all
cases. The high-frequency code was also validated and exercised in the high-frequency
regime (wavelength < surface scale length) for configurations of interest to ocean
remote sensing where the boundary variation code failed.

3 The details of this highly innovative high-frequency algorithm are currently being
considered by TRW for a patent application.

4 The high frequency algorithm has been integrated with the method of variation of
boundaries to yield a highly accurate and efficient multiple-scale solver. The high order
nature of the algorithm requires an inventive use of the Cauchy-Kowalevsky argument.
A method has been derived for the evaluation of the necessary high-order normal
derivatives, (which would normally give rise to hyper-singular integrals) through the use
of the Helmholtz equation, the second normal derivative and the high-order tangential
derivatives. These tangential derivatives, in turn, are computed through an application
of the Taylor-Fourier algebra mentioned in 1 above. The second normal derivative is
computed directly by manipulations of the kernel singularities.

This integrated code, currently being tested, is expected to be the most efficient and

accurate solver for the computation of scattered waves from multi-scale rough surfaces. A

code with these characteristics is necessary for current ocean and terrain remote sensing

applications, given the small scattering returns relative to the incident field.
5. Personnel Supported:
Dr. Alain Sei, TRW: (supported by this program ~ 65% of his time);
Dr. Maria Caponi, TRW: (supported by this program < 5% of her time);




6 Publications:

The results of these investigations are documented in the following papers:

O. Bruno, A. Sei, and M. Caponi; “High order, high frequency solvers for rough surface
scattering problems”. In Proceedings of the 2001 IEEE AP-S International symposium and
USNC/URSI National Radio Science meeting, July 2001, Boston, Massachusetts, USA.

A. Sei, M. Caponi and O. Bruno, “Polarization Ratios Anomalies of 3D Rough Surface
Scattering as Second Order Effects”. in Proceedings of the 2001 IEEE AP-S International
symposium and USNC/URSI National Radio Science meeting, July 2001, Boston,
Massachusetts, USA.

7 Interactions/Transitions:

Participation/presentation:

Participation in the AFOSR Electromagnetic workshop, San Antonio, Jan 2001.

Presentation to DARPA P| meeting Washington D.C., April 2001.

Transitions:

A detailed study of polarization anomalies has been performed in 3D using the previously
developed method of variation of boundaries. This study is still on-going and a statistical study
similar to the one performed last year in two dimensions is envisioned. This study is of interest a
particular Navy customer.

Discussion with the government are on going for application of these methods to problems of
interest to the Navy, this is expected to result in a transition follow on project. This follow on
project will include the use of the numerical code in conjunction with the TRW hydrodynamic
codes to calculate the time evolution of radar return from evolving relevant ocean surfaces and
the appropriate calculation of the associate Doppler spectrum in both the TE (H) and the TM (V)
polarization. In addition experimental validation of the algorithm will be carried out using the
TRW testing facilities.

8 New Discoveries:

A new method to solve multi-scale scattering problems under TE polarization has been
developed implemented and validated.

A new method to solve high-frequency scattering problems under TM polarization with machine
precision accuracy has been implemented and validated.

9 Honors/Awards:

None this year.



Dr. Oscar Bruno, MathSys and Caltech (Technical services, supported by this program < 10%
of his time)

6. Publications:

The investigations and results of this program are documented in the following papers:

O. Bruno, M. Caponi and A. Sei; “An innovative high-order method for electromagnetic
scattering from rough surfaces.” In Proceedings of the National Radio Science Meeting, 4-8
January, 2000, Univ. of Colorado, Boulder, USA

0. Bruno, A. Sei and M. Caponi, “ Rigorous multi-scale solver for rough-surface
scattering problems: high-order-high-frequency and variation of boundaries”. To appear in
Proceedings of the NATO meeting on Low Grazing Angle Clutter: Its characterization,
measurement and application. April 2000, Laurel, Maryland, USA.

O. Bruno, A. Sei, and M. Caponi; “ High order, high frequency solution of rough surface
scattering problems”. In Proceedings of the fifth international conference on mathematical and
numerical aspects of wave propagation, Santiago de Compostella, Spain, July 2000, pp. 477-
481.

O. Bruno, A. Sei and M. Caponi; “High order high frequency solutions of rough surface
scattering problem”, in final preparation, to be send for publication to Radio Science, Aug. 2000.

A claim has been recently sent to the TRW lawyers (July 2000) to obtain permission to
file a patent on the invention of the high frequency high order algorithm for solution of rough
surface scattering problems.

7. Interactions/Transitions:

Participation/presentation:

Poster presentation in AFOSR San Antonio Electromagnetic Workshop, Jan. 2000.
Presentation to DARPA P1 meeting Washington D.C., April 2000.

Transitions: the algorithm being developed is intended to be used in conjunction with the TRW
hydrodynamic codes to obtain a predictive model of ocean radar returns. The results from this
combined code will be extremely relevant to Navy applications. In the mean time, a tailored
version of the boundary variation method code has been used to perform a statistical study of
the polarized backscattering returns associated with ocean spectra characteristic of near
breaking long waves for a particular Navy customer. This study, still ongoing, will be extended to
larger spectral bandwidths once the multi-scale code is completely implemented and validated.
8. New Discoveries: )

A new method to compute the high-frequency scattering problem to arbitrary orders with

machine precision has been implemented.




A new method to solve the multi-scale scattering problems has been developed and
implemented.

9. Honors/Awards:

Dr A. Sei chaired the three sessions on scattering at the fifth international conference the
mathematical and numerical aspects of wave propagation, Santiago de Compostella, Spain,
July 2000.
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2. Program Objectives:

The statement of work objectives for the third year of this program were:

Detailed pai'ametric investigations for 3-D surfaces relevant to applications of interest. (E.g. 2
and 3 scale modulated wave geometries with different modulations and/or scales in each
dimension).

For the first half of the third year, these objectives have been revised to:

Implementation and validation of the 2-D TE muilti-scale code for surfaces including a range of
scales and its use in parametric investigations relevant to ocean remote sensing applications.
Formulation of the 2-D TM muiti-scale algorithm.

The goal for the rest of the third year of this program is to implement the TM multiscale
algorithm and exercise it in conjunction with the multiscale TE

Objective 2 includes

2. 1. Formulation and implementation of the high-frequency algorithm to arbitrary order under
TM polarization.

2. 2. Development of coupling between the high frequency and the boundary variation methods,
including innovative use of Cauchy-Kowalesky argument for computation of high order normal
derivatives in the TM case.

2.3. Treatment of high-order normal derivatives through the use of Helmholtz's equation,
second order normal derivatives and high-order tangential derivatives to avoid hyper-singular
integrals. This involves implementing the Neumann to Dirichlet map and its tangential
derivatives.

2.4. Integration of previous modules for a general fully accurate TM multi-scale scattering code
and parametric studies relevant to oceanic scattering.

The revision of the objectives was a requirement for a more efficient and accurate
implementation of the high-frequency algorithm. The original implementation was not amenable
to very high order expansions therefore limiting the range and accuracy of application of the
method. However, the repeated use of the high-frequency code in the final multiple scale
algorithm requires double digit accuracy to arbitrary orders.

3. Status of effort:

The essential modules for the TE multi-scale algorithm (high-order high-frequency solver,
Dirichlet to Neumann map impiementation) have been integrated to yield a highly accurate and
efficient code. Extensive optimization and validation of the code have been done by comparison
with the method of variation of boundaries in the overlap region in wavelengths where both
methods yield accurate results. The code has been exercised for numerous configurations,

machine precision accuracy was reached in cpu times of minutes in all cases (objective 1). A




detailed formulation of the high-order high frequency solver in the TM case has been
documented and implemented. This solver has been optimized and extensively validated by
comparison with the method of variation of boundaries in the overlap region in wavelengths
where both methods yield accurate results. In all cases CPU times of the order of seconds yield
full double precision accuracy (objective 2.1).

The multiscale TM algorithm, involving the coupling between the high-frequency TM
algorithm and the boundary variation methods as well as the treatment of high-order normal
derivatives (and its crucial part the Neumann to Dirichlet map) have been formulated and
documented (objective 2.2 and 2.3). The Fortran implementation of the integrated algorithm is
expected to be completed in the next few months. By the end of this third year the code will be
exercised and careful parametric investigations reievant to ocean remote sensing will be
performed.

4. Accomplishments/New Findings

During the last year the following significant accomplishments have been reached in this project:
5 Full double precision agreement was obtained between our new multi-scale method

under TE polarization and the boundary variation method for numerous and varied
examples throughout the overlap region in wavelengths where both methods are valid.
Computing times of the order of minutes on a 600MHz desktop workstation were
achieved in all cases.

6 The high-order high frequency algorithm has been formulated and implemented for the
TM case. The code was validated by comparison with the method of variation of
boundary (in the region of overlapping validity) for numerous examples. On a 600MHz
desktop workstation, full double precision accuracy was achieved in CPU times of
seconds.

Our current TE multi-scale solver (as well as the shortly expected TM multi-scale solver) is
the most efficient and accurate solver for the computation of scattered waves from multi-scale
rough surfaces. A code with such high accuracy requirements (full double precision) and speed
is a necessary tool for the study of current ocean and terrain remote sensing applications, given
the small scattering returns relative to the incident field.

The formulation of the multiscale TM algorithm has been completed and is in the process
of implementation.

5 Personnel Supported:

Dr. Alain Sei, TRW: (supported by this program ~ 70% of his time);

Dr. Maria Caponi, TRW: (supported by this program < 1% of her time);

Dr. Oscar Bruno, MathSys and Caltech (Technical services, supported by this program < 10%

of his time)
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2. Program Objectives:

The statement of work objectives for the third year of this program were modified in the progress
report for the period 07/31/00 — 07/31/01 (see appendix below). They consisted of the two
following objectives:

Implementation and validation of the 2-D TE multi-scale code for surfaces including a range of

~scales and its use in parametric investigations relevant to ocean remote sensing applications.

Formulation of the 2-D TM muiti-scale algorithm.

The goal for the rest of the third year of this program is to implement the TM multiscale
algorithm and exercise it in conjunction with the multiscale TE

Objective 2 includes

2. 1. Formulation and implementation of the high-frequency algorithm to arbitrary order
under TM polarization.

2. 2. Development of coupling between the high frequency and the boundary variation
methods, including innovative use of Cauchy-Kowalesky argument for computation of high order
normal derivatives in the TM case.

2.3. Treatment of high-order normal derivatives through the use of Helmholtz's equation,
second order normal derivatives and high-order tangential derivatives to avoid hyper-singular
integrals. This involves implementing the Neumann to Dirichlet map and its tangential
derivatives.

2.4. Integration of previous modules for a general fully accurate TM multi-scale scattering

code and parametric studies relevant to oceanic scattering.

3. Status of effort:

The objectives 1, 2.1 and 2.2 were accomplished last year. In the period August 1* 2001,
December 31 2001 objectives 2.2 and 2.3 were implemented and tested. The implementation
of the Neumann to Dirichlet map (similar to the implementation of the Dirichlet to Neumann
map) yielded full double precision agreement with the method of variation of boundaries. The
tests used a shallow surface where Rayleigh hypothesis holds. This meant that the Rayleigh
series expansion (Plane wave expansion) of the scattered field converged uniformly and
absolutely on the surface. Therefore the Neumann to Dirichlet map could be computed by direct
differentiation of the Rayleigh series.

The derivation and implementation of the general right hand side for an arbitrary order was
then tested first in the case of a plane to arbitrary high order, where the method of variation of
boundaries yielded the reference solution in closed form. Then the general right hand side was

tested for orders up to 5 by comparison of the numerical results from our code to an algebraic



manipulator (Maple). Again in this case full double precision agreement was obtained
(Objective 2.3). The integration of the Neumann to Dirichlet module, the computation of the
general rigﬁt hand side and the high frequency solver was then the final step towards a general
multiscale scattering solver in TM polarization. The implementation Was completed and testing
showed that accuracy of 9 to 10 digits was achieved in configuration similar to those tested in
the TE case (Objective 2.4). The testing and debugging of the code however had to be

interrupted in December due to lack of funding.

4. Accomplishments/New Findings
During the last six months of this project, the following significant accomplishments have been
reached:

7 Full double precision agreement of the computation of the Neumann to Dirichlet map
was obtained between our method based on single layer potentials and the Rayleigh
series expansion.

8 The general right hand side for the general high frequency problem in TM polarization
was successfully tested against the method of variation of boundary (in the case of a
plane) and against an algebraic manipulator (Maple) for a general configuration up to
order 5.

9 The general multi-scale solver in TM polarization was integrated and gave results with
accuracy of 9 to 10 digits in general configurations in CPU times of minutes. Further

improvement in the accuracy had to stop however due to lack of funding.

5 Personnel Supported:

Dr. Alain Sei, TRW: (supported by this program ~ 70% of his time);

Dr. Maria Caponi, TRW: (supported by this program < 1% of her time);

Dr. Oscar Bruno, MathSys and Caltech (Technical services, supported by this program < 10%
of his time)

6 Publications:

None this period

7 Interactions/Transitions:

None this period

8 New Discoveries:

A new method to solve multi-scale scattering problems under TM polarization has been
developed implemented and validated.

9 Honors/Awards: None this year.




